RESUMEN
Bacillus thuringiensis Berliner is recognized as a predominant bioinsecticide but its antifungal potential has been relatively underexplored. A novel B. thuringiensis strain NBAIR BtAr was isolated and morphologically characterized using light and scanning electron microscopy, revealing presence of bipyramidal, cuboidal, and spherical parasporal crystals. The crude form of lipopeptides was extracted from NBAIR BtAr and assessed for its antagonistic activity in vitro, and demonstrated 100 % inhibition of Sclerotium rolfsii Sacc. at a minimum inhibitory concentration of 50 µL of the crude lipopeptide extract per mL of potato dextrose agar. To identify the antagonistic genes responsible, we performed whole genome sequencing of NBAIR BtAr, revealing the presence of circular chromosome of 5,379,913 bp and 175,362 bp plasmid with 36.06 % guanine-cytosine content and 5814 protein-coding sequences. Average nucleotide identity and whole genome phylogenetic analysis delineated the NBAIR BtAr strain as konkukian serovar. Gene ontology analysis revealed associations of 1474, 1323, and 1833 genes with biological processes, molecular function, and cellular components, respectively. Antibiotics & secondary metabolite analysis shell analysis of the whole genome yielded secondary metabolites biosynthetic gene clusters with 100 %, 85 %, 40 %, and 35 % similarity for petrobactin, bacillibactin, fengycin, and paenilamicin, respectively. Also, novel biosynthetic gene clusters, along with antimicrobial genes, including zwittermicin A, chitinase, and phenazines, were identified. Moreover, the presence of eight bacteriophage sequences, 18 genomic islands, insertion sequences, and one CRISPR region indicated prior occurrences of genetic exchange and thus improved competitive fitness of the strain. Overall, the whole genome sequence of NBAIR BtAr is presented, with its taxonomic classification and critical genetic attributes that contribute to its strong antagonistic activity against S. rolfsii.
Asunto(s)
Ascomicetos , Bacillus thuringiensis , Genoma Bacteriano , Lipopéptidos , Pruebas de Sensibilidad Microbiana , Filogenia , Secuenciación Completa del Genoma , Bacillus thuringiensis/genética , Bacillus thuringiensis/metabolismo , Lipopéptidos/farmacología , Lipopéptidos/metabolismo , Lipopéptidos/genética , Lipopéptidos/biosíntesis , Ascomicetos/genética , Ascomicetos/metabolismo , Ascomicetos/efectos de los fármacos , Antifúngicos/farmacología , Antifúngicos/metabolismo , Plásmidos/genética , Antibiosis , Agentes de Control Biológico/metabolismo , Composición de BaseRESUMEN
In the current scenario, it is estimated that by 2050, there will be an additional 2.5 billion people and a 70% increase in food demand. Crop yields are not increasing fast enough to support global needs, and world agriculture is facing several serious challenges. Therefore, insects can be a nutritious alternative to meet the ever-increasing food demand in the present and future. The majority of insect consumption occurs in developing countries, with approximately 1,900 insect species consumed worldwide. Food and feed derived from them are of high quality, have a high feed conversion ratio and emit a low level of greenhouse gases. Among insects silkworms are beneficial to humans, not only because of their high nutritional value, but also because of their several pharmacological properties. Silkworm eggs, larvae, and pupae contains high amount of proteins, oils, minerals, vitamins, and several other beneficial components which are nutritious as well as have positive effect on human health. Studies have shown that silkworm pupae protect the liver, enhance immunity, inhibit apoptosis, inhibit cancer, inhibit tumor growth, inhibit microbial growth, regulate blood glucose and blood lipids, and lower blood pressure. This review paper summerized the nutritional value of different life stages of silkworm, nutritional comparison of silkworm with the major human foods, and the effects of silkworm consumption on human health, thus ittargets to generate interest toward in sericulture and improve human health by using silkworm as a nutritious food and attain sustainability in food and nutritional security.
RESUMEN
Bemisia tabaci (Hemiptera: Aleyrodidae) is a highly efficient vector in the spread of chilli leaf curl virus (ChiLCV, Begomovirus) which is a major constraint in the production of chilli in South Asia. Transcriptome analysis of B. tabaci post-6 h acquisition of ChiLCV showed differential expression of 80 (29 upregulated and 51 downregulated) genes. The maximum number of DEGs are categorized under the biological processes category followed by cellular components and molecular functions. KEGG analysis of DEGs showed that the genes are involved in the functions like metabolism, signaling pathways, cellular processes, and organismal systems. The expression of highly expressed 20 genes post-ChiLCV acquisition was validated in RT-qPCR. DEGs such as cytosolic carboxypeptidase 3, dual-specificity protein phosphatase 10, 15, dynein axonemal heavy chain 17, fasciclin 2, inhibin beta chain, replication factor A protein 1, and Tob1 were found enriched and favored the virus infection and circulation in B. tabaci. The present study provides an improved understanding of the networks of molecular interactions between B. tabaci and ChiLCV. The candidate genes of B. tabaci involved in ChiLCV transmission would be novel targets for the management of the B. tabaci-begomovirus complex.
RESUMEN
The cultivation of dolichos bean [Lablab purpureus (L.) Sweet] has been severely affected by dolichos yellow mosaic virus (DoYMV, Begomovirus) transmitted by whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). We tested the transovarial transmission of DoYMV in next-generation B. tabaci by PCR, real-time PCR, Southern blot hybridization, and biological transmission. The eggs, laid by DoYMV-exposed B. tabaci, carry the virus in a unique pattern. Only the eggs laid in between 3 and 6 days post virus acquisition by a parent B. tabaci were DoYMV positive. When tested individually in real-time PCR, around 31-53% of the eggs carried the virus. The presence of DoYMV in ovaries and F1 eggs was further substantiated by the hybridization of a Cy3-conjugated nucleic acid probe complementary to the viral strand of DoYMV. Viral DNA was also detected in F1 adults and F2 eggs. B. tabaci progenies carried not only the DoYMV DNA but were also infective. The F1 adults transmitted DoYMV to all tested plants and produced strong yellow mosaic symptoms. An increase in viral copies from egg to nymphal stage indicated propagation of DoYMV in B. tabaci. However, the increase was for a short period and decreased thereafter. The present study provides the first evidence of transovarial transmission and propagation of a bipartite begomovirus in its vector, B. tabaci Asia II 1. The transovarial transmission and replication of DoYMV in B. tabaci have great epidemiological relevance as B. tabaci can serve as a major host of the virus to bridge the gap between the cropping seasons.