Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Tree Physiol ; 43(8): 1307-1318, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37067918

RESUMEN

Karst forests are habitats in which access to soil water can be challenging for plants. Therefore, safe and efficient xylem water transport and large internal water storage may benefit tree growth. In this study, we selected 22 tree species from a primary subtropical karst forest in southern China and measured their xylem anatomical traits, saturated water content (SWC), hydraulic conductivity (Ks) and embolism resistance (P50). Additionally, we monitored growth of diameter at breast height (DBH) in 440 individual trees of various sizes over three consecutive years. Our objective was to analyze the relationships between xylem structure, hydraulic efficiency, safety, water storage and growth of karst tree species. The results showed significant differences in structure but not in hydraulic traits between deciduous and evergreen species. Larger vessel diameter, paratracheal parenchyma and higher SWC were correlated with higher Ks. Embolism resistance was not correlated with the studied anatomical traits, and no tradeoff with Ks was observed. In small trees (5-15 cm DBH), diameter growth rate (DGR) was independent of hydraulic traits. In large trees (>15 cm DBH), higher Ks and more negative P50 accounted for higher DGR. From lower to greater embolism resistance, the size-growth relationship shifted from growth deceleration to acceleration with increasing tree size in eight of the 22 species. Our study highlights the vital contributions of xylem hydraulic efficiency and safety to growth rate and dynamics in karst tree species; therefore, we strongly recommend their integration into trait-based forest dynamic models.


Asunto(s)
Bosques , Árboles , Transporte Biológico , China , Agua
2.
Ann Bot ; 128(2): 183-191, 2021 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-33930116

RESUMEN

BACKGROUND AND AIMS: Leaf biomechanical resistance protects leaves from biotic and abiotic damage. Previous studies have revealed that enhancing leaf biomechanical resistance is costly for plant species and leads to an increase in leaf drought tolerance. We thus predicted that there is a functional correlation between leaf hydraulic safety and biomechanical characteristics. METHODS: We measured leaf morphological and anatomical traits, pressure-volume parameters, maximum leaf hydraulic conductance (Kleaf-max), leaf water potential at 50 % loss of hydraulic conductance (P50leaf), leaf hydraulic safety margin (SMleaf), and leaf force to tear (Ft) and punch (Fp) of 30 co-occurring woody species in a sub-tropical evergreen broadleaved forest. Linear regression analysis was performed to examine the relationships between biomechanical resistance and other leaf hydraulic traits. KEY RESULTS: We found that higher Ft and Fp values were significantly associated with a lower (more negative) P50leaf and a larger SMleaf, thereby confirming the correlation between leaf biomechanical resistance and hydraulic safety. However, leaf biomechanical resistance showed no correlation with Kleaf-max, although it was significantly and negatively correlated with leaf outside-xylem hydraulic conductance. In addition, we also found that there was a significant correlation between biomechanical resistance and the modulus of elasticity by excluding an outlier. CONCLUSIONS: The findings of this study reveal leaf biomechanical-hydraulic safety correlation in sub-tropical woody species.


Asunto(s)
Hojas de la Planta , Xilema , Sequías , Agua , Madera
3.
Biol Lett ; 16(11): 20200456, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33202185

RESUMEN

Leaf hydraulic conductance and the vulnerability to water deficits have profound effects on plant distribution and mortality. In this study, we compiled a leaf hydraulic trait dataset with 311 species-at-site combinations from biomes worldwide. These traits included maximum leaf hydraulic conductance (Kleaf), water potential at 50% loss of Kleaf (P50leaf), and minimum leaf water potential (Ψmin). Leaf hydraulic safety margin (HSMleaf) was calculated as the difference between Ψmin and P50leaf. Our results indicated that 70% of the studied species had a narrow HSMleaf (less than 1 MPa), which was consistent with the global pattern of stem hydraulic safety margin. There was a positive relationship between HSMleaf and aridity index (the ratio of mean annual precipitation to potential evapotranspiration), as species from humid sites tended to have larger HSMleaf. We found a significant relationship between Kleaf and P50leaf across global angiosperm woody species and within each of the different plant groups. This global analysis of leaf hydraulic traits improves our understanding of plant hydraulic response to environmental change.


Asunto(s)
Magnoliopsida , Ecosistema , Hojas de la Planta , Agua , Madera
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA