RESUMEN
PURPOSE: Despite the substantial progress in the development of targeted anticancer drugs, treatment failure due to primary or acquired resistance is still a major hurdle in the effective treatment of most advanced human cancers. Understanding these resistance mechanisms will be instrumental to improve personalized cancer treatment. EXPERIMENTAL DESIGN: Genome-wide loss-of-function genetic screens were performed to identify genes implicated in resistance to HER2/PI3K/mTOR targeting agents in HER2+ breast cancer cell lines. Expression and adjuvant trastuzumab response data from the HER2+ breast cancer trials FinHer and Responsify were used to validate our findings in patient series. RESULTS: We find that reduced ARID1A expression confers resistance to several drugs that inhibit the HER2/PI3K/mTOR signaling cascade at different levels. We demonstrate that ARID1A loss activates annexin A1 (ANXA1) expression, which is required for drug resistance through its activation of AKT. We find that the AKT inhibitor MK2206 restores sensitivity of ARID1A knockdown breast cancer cells to both the mTOR kinase inhibitor AZD8055 and trastuzumab. Consistent with these in vitro data, we find in two independent HER2+ breast cancer patient series that high ANXA1 expression is associated with resistance to adjuvant trastuzumab-based therapy. CONCLUSIONS: Our findings provide a rationale for why tumors accumulate ARID1A mutations and identify high ANXA1 expression as a predictive biomarker for trastuzumab-based treatment. Our findings also suggest strategies to treat breast cancers with elevated ANXA1 expression. Clin Cancer Res; 22(21); 5238-48. ©2016 AACR.
Asunto(s)
Anexina A1/metabolismo , Antineoplásicos Inmunológicos/farmacología , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Resistencia a Antineoplásicos/efectos de los fármacos , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Trastuzumab/farmacología , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proteínas de Unión al ADN , Femenino , Compuestos Heterocíclicos con 3 Anillos/farmacología , Humanos , Células MCF-7 , Morfolinas/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor ErbB-2/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
Recurrent inactivating mutations in components of SWI/SNF chromatin-remodeling complexes have been identified across cancer types, supporting their roles as tumor suppressors in modulating oncogenic signaling pathways. We report here that SMARCE1 loss induces EGFR expression and confers resistance to MET and ALK inhibitors in non-small cell lung cancers (NSCLCs). We found that SMARCE1 binds to regulatory regions of the EGFR locus and suppresses EGFR transcription in part through regulating expression of Polycomb Repressive Complex component CBX2. Addition of the EGFR inhibitor gefitinib restores the sensitivity of SMARCE1-knockdown cells to MET and ALK inhibitors in NSCLCs. Our findings link SMARCE1 to EGFR oncogenic signaling and suggest targeted treatment options for SMARCE1-deficient tumors.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Receptores ErbB/biosíntesis , Neoplasias Pulmonares/genética , Quinasa de Linfoma Anaplásico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proteínas Cromosómicas no Histona/biosíntesis , Proteínas de Unión al ADN/biosíntesis , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/genética , Gefitinib , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Mutación , Complejo Represivo Polycomb 1/biosíntesis , Proteínas Proto-Oncogénicas c-met/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-met/genética , Quinazolinas/administración & dosificación , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/genética , Transducción de Señal/efectos de los fármacosRESUMEN
Retinoids play key roles in development, differentiation, and homeostasis through regulation of specific target genes by the retinoic acid receptor/retinoid X receptor (RAR/RXR) nuclear receptor complex. Corepressors and coactivators contribute to its transcriptional control by creating the appropriate chromatin environment, but the precise composition of these nuclear receptor complexes remains to be elucidated. Using an RNA interference-based genetic screen in mouse F9 cells, we identified the transcriptional corepressor CTBP2 (C-terminal binding protein 2) as a coactivator critically required for retinoic acid (RA)-induced transcription. CTBP2 suppression by RNA interference confers resistance to RA-induced differentiation in diverse murine and human cells. Mechanistically, we find that CTBP2 associates with RAR/RXR at RA target gene promoters and is essential for their transactivation in response to RA. We show that CTBP2 is indispensable to create a chromatin environment conducive for RAR/RXR-mediated transcription by recruiting the histone acetyltransferase p300. Our data reveal an unexpected function of the corepressor CTBP2 as a coactivator for RAR/RXR in RA signaling.
Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Proteínas Co-Represoras/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Fosfoproteínas/metabolismo , Receptores de Ácido Retinoico/metabolismo , Receptores X Retinoide/metabolismo , Tretinoina/metabolismo , Oxidorreductasas de Alcohol/genética , Animales , Diferenciación Celular , Línea Celular , Línea Celular Tumoral , Proteínas Co-Represoras/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica , Humanos , Ratones , Proteínas del Tejido Nervioso/genética , Fosfoproteínas/genética , Regiones Promotoras Genéticas , Interferencia de ARN , Transducción de Señal , Transcripción Genética , Factores de Transcripción p300-CBP/metabolismoRESUMEN
Inhibitors of the ALK and EGF receptor tyrosine kinases provoke dramatic but short-lived responses in lung cancers harboring EML4-ALK translocations or activating mutations of EGFR, respectively. We used a large-scale RNAi screen to identify MED12, a component of the transcriptional MEDIATOR complex that is mutated in cancers, as a determinant of response to ALK and EGFR inhibitors. MED12 is in part cytoplasmic where it negatively regulates TGF-ßR2 through physical interaction. MED12 suppression therefore results in activation of TGF-ßR signaling, which is both necessary and sufficient for drug resistance. TGF-ß signaling causes MEK/ERK activation, and consequently MED12 suppression also confers resistance to MEK and BRAF inhibitors in other cancers. MED12 loss induces an EMT-like phenotype, which is associated with chemotherapy resistance in colon cancer patients and to gefitinib in lung cancer. Inhibition of TGF-ßR signaling restores drug responsiveness in MED12(KD) cells, suggesting a strategy to treat drug-resistant tumors that have lost MED12.
Asunto(s)
Antineoplásicos/uso terapéutico , Resistencia a Antineoplásicos , Complejo Mediador/metabolismo , Neoplasias/tratamiento farmacológico , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Transducción de Señal , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Transición Epitelial-Mesenquimal , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Sistema de Señalización de MAP Quinasas , Complejo Mediador/genéticaRESUMEN
Despite intense investigation of intrinsic and extrinsic factors that regulate pluripotency, the process of initial fate commitment of embryonic stem (ES) cells is still poorly understood. We used a genome-wide short hairpin RNA screen in mouse ES cells to identify genes that are essential for initiation of differentiation. Knockdown of the scaffolding protein Mek binding protein 1 (Mp1, also known as Lamtor3 or Map2k1ip1) stimulated self-renewal of ES cells, blocked differentiation, and promoted proliferation. Fibroblast growth factor 4 (FGF4) signaling is required for initial fate commitment of ES cells. Knockdown of Mp1 inhibited FGF4-induced differentiation but did not alter FGF4-driven proliferation. This uncoupling of differentiation and proliferation was also observed when oncogenic Ras isoforms were overexpressed in ES cells. Knockdown of Mp1 redirected FGF4 signaling from differentiation toward pluripotency and up-regulated the pluripotency-related genes Esrrb, Rex1, Tcl1, and Sox2. We also found that human germ cell tumors (GCTs) express low amounts of Mp1 in the invasive embryonic carcinoma and seminoma histologies and higher amounts of Mp1 in the noninvasive carcinoma in situ precursor and differentiated components. Knockdown of Mp1 in invasive GCT cells resulted in resistance to differentiation, thereby showing a functional role for Mp1 both in normal differentiation of ES cells and in germ cell cancer.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Diferenciación Celular/fisiología , Células Madre Embrionarias/metabolismo , Células Madre Pluripotentes/metabolismo , Interferencia de ARN , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Carcinoma in Situ/genética , Carcinoma in Situ/metabolismo , Línea Celular , Proliferación Celular , Células Madre Embrionarias/citología , Factor 4 de Crecimiento de Fibroblastos/genética , Factor 4 de Crecimiento de Fibroblastos/metabolismo , Regulación de la Expresión Génica/fisiología , Estudio de Asociación del Genoma Completo/métodos , Humanos , Ratones , Ratones Noqueados , Neoplasias de Células Germinales y Embrionarias/genética , Neoplasias de Células Germinales y Embrionarias/metabolismo , Células Madre Pluripotentes/citología , Transducción de Señal/fisiologíaRESUMEN
Retinoic acid (RA) induces differentiation of neuroblastoma cells in vitro and is used with variable success to treat aggressive forms of this disease. This variability in clinical response to RA is enigmatic, as no mutations in components of the RA signaling cascade have been found. Using a large-scale RNAi genetic screen, we identify crosstalk between the tumor suppressor NF1 and retinoic acid-induced differentiation in neuroblastoma. Loss of NF1 activates RAS-MEK signaling, which in turn represses ZNF423, a critical transcriptional coactivator of the retinoic acid receptors. Neuroblastomas with low levels of both NF1 and ZNF423 have extremely poor outcome. We find NF1 mutations in neuroblastoma cell lines and in primary tumors. Inhibition of MEK signaling downstream of NF1 restores responsiveness to RA, suggesting a therapeutic strategy to overcome RA resistance in NF1-deficient neuroblastomas.
Asunto(s)
Neuroblastoma/diagnóstico , Neurofibromina 1/metabolismo , Tretinoina/metabolismo , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Humanos , Neuroblastoma/metabolismo , Neurofibromina 1/genética , Pronóstico , Proteínas , Transducción de Señal , Activación TranscripcionalRESUMEN
Retinoids play key roles in differentiation, growth arrest, and apoptosis and are increasingly being used in the clinic for the treatment of a variety of cancers, including neuroblastoma. Here, using a large-scale RNA interference-based genetic screen, we identify ZNF423 (also known as Ebfaz, OAZ, or Zfp423) as a component critically required for retinoic acid (RA)-induced differentiation. ZNF423 associates with the RARalpha/RXRalpha nuclear receptor complex and is essential for transactivation in response to retinoids. Downregulation of ZNF423 expression by RNA interference in neuroblastoma cells results in a growth advantage and resistance to RA-induced differentiation, whereas overexpression of ZNF423 leads to growth inhibition and enhanced differentiation. Finally, we show that low ZNF423 expression is associated with poor disease outcome in neuroblastoma patients.
Asunto(s)
Antineoplásicos/farmacología , Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/patología , Tretinoina/farmacología , Adolescente , Niño , Preescolar , Inmunoprecipitación de Cromatina , Proteínas de Unión al ADN/genética , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Pronóstico , Regiones Promotoras Genéticas , Proteínas , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo , Receptor alfa de Ácido Retinoico , Tasa de Supervivencia , Teratocarcinoma/metabolismo , Teratocarcinoma/patología , Dedos de ZincRESUMEN
Small molecule inhibitors of HER2 are clinically active in women with advanced HER2-positive breast cancer who have progressed on trastuzumab treatment. However, the effectiveness of this class of agents is limited by either primary resistance or acquired resistance. Using an unbiased genetic approach, we performed a genome wide loss-of-function short hairpin RNA screen to identify novel modulators of resistance to lapatinib, a recently approved anti-HER2 tyrosine kinase inhibitor. Here, we have identified the tumor suppressor PTEN as a modulator of lapatinib sensitivity in vitro and in vivo. In addition, we show that two dominant activating mutations in PIK3CA (E545K and H1047R), which are prevalent in breast cancer, also confer resistance to lapatinib. Furthermore, we show that phosphatidylinositol 3-kinase (PI3K)-induced lapatinib resistance can be abrogated through the use of NVP-BEZ235, a dual inhibitor of PI3K/mTOR. Our data show that deregulation of the PI3K pathway, either through loss-of-function mutations in PTEN or dominant activating mutations in PIK3CA, leads to lapatinib resistance, which can be effectively reversed by NVP-BEZ235.
Asunto(s)
Proteínas Portadoras/antagonistas & inhibidores , Imidazoles/farmacología , Fosfatidilinositol 3-Quinasas/fisiología , Fosfotransferasas (Aceptor de Grupo Alcohol)/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Quinazolinas/farmacología , Quinolinas/farmacología , Animales , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales Humanizados , Línea Celular Tumoral , Resistencia a Medicamentos , Femenino , Humanos , Lapatinib , Ratones , Ratones Endogámicos BALB C , Mutación , Fosfohidrolasa PTEN/antagonistas & inhibidores , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/genética , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR , TrastuzumabRESUMEN
The human telomerase RNA (hTR), together with the telomerase reverse transcriptase, hTERT, constitute the core components of telomerase that is essential for telomere maintenance. While hTR is ubiquitously expressed, hTERT is normally restricted to germ cells and certain stem cells, but both are often deregulated during tumorigenesis. Here, we investigated the effects of changes in hTR cellular levels. Surprisingly, while inhibition of hTR expression triggers a rapid, telomerase-independent, growth arrest associated with p53 and CHK1 activation, its increased expression neutralizes activation of these pathways in response to genotoxic stress. These hTR effects are mediated through ATR and are sufficiently strong to impair ATR-mediated DNA-damage checkpoint responses. Furthermore, in response to low UV radiation, which activates ATR, endogenous hTR levels increase irrespective of telomerase status. Thus, we uncovered a novel, telomerase-independent, function of hTR that restrains ATR activity and participates in the recovery of cells from UV radiation.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , ARN/fisiología , Telomerasa/fisiología , Proteínas de la Ataxia Telangiectasia Mutada , Ciclo Celular/genética , Ciclo Celular/efectos de la radiación , Proteínas de Ciclo Celular/antagonistas & inhibidores , División Celular/genética , División Celular/efectos de la radiación , Línea Celular , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Fase G2/genética , Fase G2/efectos de la radiación , Inhibidores de Crecimiento/fisiología , Humanos , Proteínas Quinasas/fisiología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Transducción de Señal/genética , Transducción de Señal/efectos de la radiación , Telomerasa/antagonistas & inhibidores , Telomerasa/biosíntesis , Telomerasa/genética , Proteína p53 Supresora de Tumor/fisiología , Rayos UltravioletaRESUMEN
RNA interference (RNAi) is a powerful new tool with which to perform loss-of-function genetic screens in lower organisms and can greatly facilitate the identification of components of cellular signalling pathways. In mammalian cells, such screens have been hampered by a lack of suitable tools that can be used on a large scale. We and others have recently developed expression vectors to direct the synthesis of short hairpin RNAs (shRNAs) that act as short interfering RNA (siRNA)-like molecules to stably suppress gene expression. Here we report the construction of a set of retroviral vectors encoding 23,742 distinct shRNAs, which target 7,914 different human genes for suppression. We use this RNAi library in human cells to identify one known and five new modulators of p53-dependent proliferation arrest. Suppression of these genes confers resistance to both p53-dependent and p19ARF-dependent proliferation arrest, and abolishes a DNA-damage-induced G1 cell-cycle arrest. Furthermore, we describe siRNA bar-code screens to rapidly identify individual siRNA vectors associated with a specific phenotype. These new tools will greatly facilitate large-scale loss-of-function genetic screens in mammalian cells.