Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Life Sci ; : 123070, 2024 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-39332490

RESUMEN

TRPV1, a polymodal and nonselective cation ion channel has unique gating mechanisms which is regulated by supramolecular complexes at the plasma membrane formed with membrane proteins, lipids and kinase pathways. Crosstalk between microtubule cytoskeleton with TRPV1 at various level has been established. Previously we demonstrated that the positively-charged residues present at specific tubulin-binding stretch sequences (i.e. TBS1 and TBS2, AA 710-730 and 770-797 respectively) located at the C-terminus of TRPV1 are crucial for tubulin interaction and such sequences have evolutionary origin. The nature of TRPV1-tubulin complex and its functional importance remain poorly understood. Here, we made several mutations in the TBS1 and TBS2 regions and characterized such mutants. Though these mutations reduce tubulin interaction drastically, a low and basal-level of tubulin interaction remains with these mutants. Substitution of positively-charged residues (Lys and Arg) to Ala in the TBS1, but not in TBS2 region results in reduced ligand-sensitivity. Such ligand-sensitivity is altered in response to Taxol or Nocodazole. We suggest that tubulin interaction at the TBS1 region favours channel opening while interaction in TBS2 favours channel closure. We demonstrate for the first time the functional significance of TRPV1-tubulin complex and endorse microtubule dynamics as a parameter that can alter TRPV1 channel functions. These findings can be relevant for several physiological functions and also in the context of chemotherapy-induced neuropathic pain caused by various microtubule stabilizing chemotherapeutic drugs Thus, this characterization may indicate TRPV1 as a potential therapeutic target relevant for chemotherapeutic drug-induced peripheral neuropathies, neurodegeneration and other neurological disorders.

2.
Biochem Biophys Res Commun ; 737: 150498, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39128224

RESUMEN

Microtubule-based chemotherapeutics, primarily Taxane-derived agents are still used as the major live-saving agents, yet have several side effects including serious loss of immune cells, bone density etc. which lowers the quality of life. This imposes the need to understand the effects of these agents on Mesenchymal Stem Cells (MSCs) in details. In this work we demonstrate that Taxol and Nocodazole affects the endogenous expression of TRPV1, a non-selective cation channel in MSCs. These agents also affect the status of polymerized Actin as well as Tyrosinated-tubulin, basal cytosolic Ca2+ and mitochondrial membrane potential (ΔΨm). Notably, pharmacological modulation of TRPV1 by Capsaicin or Capsazepine can also alter the above-mentioned parameters in a context-dependent manner. We suggest that endogenous expression of TRPV1 and pharmacological modulation of TRPV1 can be utilized to rescue some of these parameters effectively. These findings may have significance in the treatments and strategies with Microtubule-based chemotherapeutics and stem-cell based therapy.

3.
Dent Med Probl ; 61(4): 533-539, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39121234

RESUMEN

BACKGROUND: Although the microplate system is commonly used for the treatment of maxillofacial fractures, its use in the fixation of mandibular fractures is not widely accepted. OBJECTIVES: The study aimed to evaluate and compare the efficacy of microplates and miniplates in osteosynthesis for the internal fixation of undisplaced and minimally displaced anterior mandibular fractures. MATERIAL AND METHODS: A total of 40 patients diagnosed with undisplaced or minimally displaced symphyseal and parasymphyseal fractures were randomly assigned to 2 study groups (group A and group B). Patients in group A (microplate group) were treated with two 0.8-mm microplates, whereas patients in group B (miniplate group) received two 2.0-mm miniplates. Bite force values were recorded in 30 healthy individuals (control group) to establish baseline values. Postoperative bite force values were recorded at various intervals and compared between the study groups and the control group. RESULTS: Both groups demonstrated a progressive improvement in the bite force. However, the bite force values recorded at the 2nd, 4th and 6th postoperative weeks were comparatively lower in the microplate group. At the six-week follow-up, the bite force values were lower in both study groups in comparison to the control group. There were no differences in the incidence of postoperative complications between the study groups. CONCLUSIONS: The use of microplates in the management of undisplaced or minimally displaced anterior mandibular fractures results in a reduction in the recovery of biting force in comparison to the conventional miniplate system.


Asunto(s)
Fuerza de la Mordida , Placas Óseas , Fijación Interna de Fracturas , Fracturas Mandibulares , Humanos , Fracturas Mandibulares/cirugía , Fijación Interna de Fracturas/instrumentación , Masculino , Femenino , Adulto , Adulto Joven , Persona de Mediana Edad , Resultado del Tratamiento
4.
Neurochem Int ; 179: 105826, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39117000

RESUMEN

TRPV1 acts as a unique polymodal ion channel having distinct structure and gating properties. In this context, TRPV1-R575D represents a special mutant located at the inner lipid-water-interface (LWI) region that has less possibility of interaction with membrane cholesterol. In control conditions, this lab-generated mutant of TRPV1 shows no "ligand-sensitivity", reduced surface expression, reduced localization in the lipid rafts, yet induces high cellular lethality. Notably, the cellular lethality induced by TRPV1-R575D expression can be rescued by adding 5'I-RTX (a specific inhibitor of TRPV1) or by introducing another mutation in the next position, i.e. in TRPV1-R575D/D576R. In this work we characterized TRPV1-R575D and TRPV1-R575D/D576R mutants in different cellular conditions and compared with the TRPV1-WT. We report that the "ligand-insensitivity" of TRPV1-R575D can be rescued in certain conditions, such as by chelation of extracellular Ca2+, or by reduction of the membrane cholesterol. Here we show that Ca2+ plays an important role in the channel gating of TRPV1-WT as well as LWI mutants (TRPV1-R575D, TRPV1-R575D/D576R). However, chelation of intracellular Ca2+ or depletion of ER Ca2+ did not have a significant effect on the TRPV1-R575D. Certain properties related to channel gating of mutant TRPV1-R575D/D576R can be rescued partially or fully in a context -dependent manner. Cholesterol depletion also alters these properties. Our data suggests that lower intracellular basal Ca2+ acts as a pre-requisite for further opening of TRPV1-R575D. These findings enable better understanding of the structure-function relationship of TRPV1 and may be critical in comprehending the channelopathies induced by other homologous thermosensitive TRPVs.


Asunto(s)
Calcio , Capsaicina , Colesterol , Canales Catiónicos TRPV , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Colesterol/metabolismo , Capsaicina/farmacología , Calcio/metabolismo , Humanos , Células HEK293 , Mutación , Agua/metabolismo , Agua/química , Quelantes/farmacología , Animales
5.
J Cancer Prev ; 29(2): 32-44, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38957589

RESUMEN

Cancer drug resistance is associated with metabolic adaptation. Cancer cells have been shown to implicate acetylated polyamines in adaptations during cell death. However, exploring the mimetic of acetylated polyamines as a potential anticancer drug is lacking. We performed intracellular metabolite profiling of human breast cancer MCF-7 cells treated with doxorubicin (DOX), a well known anticancer drug. A novel and in-house vertical tube gel electrophoresis assisted procedure followed by LC-HRMS analysis was employed to detect acetylated polyamines such as N1-acetylspermidine. We designed a mimetic N1-acetylspermidine (MINAS) which is a known substrate of histone deacetylase 10 (HDAC10). Molecular docking and molecular dynamics (MDs) simulations were used to evaluate the inhibitory potential of MINAS against HDAC10. The inhibitory potential and the ADMET profile of MINAS were compared to a known HDAC10 inhibitor Tubastatin A. N1-acetylspermidine, an acetylated form of polyamine, was detected intracellularly in MCF-7 cells treated with DOX over DMSO-treated MCF-7 cells. We designed and curated MINAS (PubChem CID 162679241). Molecular docking and MD simulations suggested the strong and comparable inhibitory potential of MINAS (-8.2 kcal/mol) to Tubastatin A (-8.4 kcal/mol). MINAS and Tubastatin A share similar binding sites on HDAC10, including Ser138, Ser140, Tyr183, and Cys184. Additionally, MINAS has a better ADMET profile compared to Tubastatin A, with a high MRTD value and lower toxicity. In conclusion, the data show that N1-acetylspermidine levels rise during DOX-induced breast cancer cell death. Additionally, MINAS, an N1-acetylspermidine mimetic compound, could be investigated as a potential anticancer drug when combined with chemotherapy like DOX.

6.
Sci Rep ; 14(1): 12809, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834815

RESUMEN

Virtual Reality (VR) laboratories are a new pedagogical approach to support psychomotor skills development in undergraduate programmes to achieve practical competency. VR laboratories are successfully used to carry out virtual experiments in science courses and for clinical skills training in professional courses. This paper describes the development and evaluation of a VR-based microbiology laboratory on Head-Mounted Display (HMD) for undergraduate students. Student and faculty perceptions and expectations were collected to incorporate into the laboratory design. An interactive 3-dimensional VR laboratory with a 360° view was developed simulating our physical laboratory setup. The laboratory environment was created using Unity with the (created) necessary assets and 3D models. The virtual laboratory was designed to replicate the physical laboratory environment as suggested by the students and faculty. In this VR laboratory, six microbiology experiments on Gram staining, bacterial streaking, bacterial motility, catalase test, oxidase test and biochemical tests were placed on the virtual platform. First-year biomedical science students were recruited to evaluate the VR laboratory. Students' perception of the virtual laboratory was positive and encouraging. About 70% of the students expressed they felt safe using the VR laboratory and that it was engaging. They felt that the VR laboratory provided an immersive learning experience. They appreciated that they could repeat each experiment multiple times without worrying about mistakes or mishaps. They could personalise their learning by concentrating on the specific experiments. Our in-house VR-based microbiology laboratory was later extended to other health professions programmes teaching microbiology.


Asunto(s)
Microbiología , Realidad Virtual , Humanos , Microbiología/educación , Laboratorios , Competencia Clínica , Femenino , Masculino
7.
Toxicol Res (Camb) ; 13(1): tfae020, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38496320

RESUMEN

With the aim of persistence property analysis and ecotoxicological impact of veterinary pharmaceuticals on different terrestrial species, different classes of veterinary pharmaceuticals (n = 37) with soil degradation property (DT50) were gathered and subjected to QSAR and q-RASAR model development. The models were developed from 2D descriptors under organization for economic cooperation and development guidelines with the application of multiple linear regressions along with genetic algorithm. All developed QSAR and q-RASAR were statistically significant (Internal = R2adj: 0.721-0.861, Q2LOO: 0.609-0.757, and external = Q2Fn = 0.597-0.933, MAEext = 0.174-0.260). Further, the leverage approach of applicability domain assured the model's reliability. The veterinary pharmaceuticals with no experimental values were classified based on their persistence level. Further, the terrestrial toxicity analysis of persistent veterinary pharmaceuticals was done using toxicity prediction by computer assisted technology and in-house built quantitative structure toxicity relationship models to prioritize the toxic and persistent veterinary pharmaceuticals. This study will be helpful in estimation of persistence and toxicity of existing and upcoming veterinary pharmaceuticals.

8.
Mol Diagn Ther ; 28(3): 249-264, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38530633

RESUMEN

The minichromosome maintenance (MCM) protein is a component of an active helicase that is essential for the initiation of DNA replication. Dysregulation of MCM functions contribute to abnormal cell proliferation and genomic instability. The interactions of MCM with cellular factors, including Cdc45 and GINS, determine the formation of active helicase and functioning of helicase. The functioning of MCM determines the fate of DNA replication and, thus, genomic integrity. This complex is upregulated in precancerous cells and can act as an important tool for diagnostic applications. The MCM protein complex can be an important broad-spectrum therapeutic target in various cancers. Investigations have supported the potential and applications of MCM in cancer diagnosis and its therapeutics. In this article, we discuss the physiological roles of MCM and its associated factors in DNA replication and cancer pathogenesis.


Asunto(s)
Replicación del ADN , Proteínas de Mantenimiento de Minicromosoma , Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/terapia , Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas de Mantenimiento de Minicromosoma/genética , Inestabilidad Genómica , Biomarcadores de Tumor/metabolismo , ADN Helicasas/metabolismo , ADN Helicasas/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Animales
9.
Asian Pac J Cancer Prev ; 25(2): 433-446, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38415528

RESUMEN

BACKGROUND: Cancer cells exhibit selective metabolic reprogramming to promote proliferation, invasiveness, and metastasis. Sphingolipids such as sphingosine and sphinganine have been reported to modulate cell death processes in cancer cells. However, the potential of extracellular sphinganine and its mimetic compounds as inducers of cancer cell death has not been thoroughly investigated. METHODS: We obtained extracellular conditioned medium from HCT-116 cells treated with the previously reported anticancer composition, goat urine DMSO fraction (GUDF). The extracellular metabolites were purified using a novel and in-house developed vertical tube gel electrophoresis (VTGE) technique and identified through LC-HRMS. Extracellular metabolites such as sphinganine, sphingosine, C16 sphinganine, and phytosphingosine were screened for their inhibitory role against intracellular kinases using molecular docking. Molecular dynamics (MD) simulations were performed to study the inhibitory potential of a novel designed modified mimetic sphinganine (MMS) (Pubchem CID: 162625115) upon c-Src kinase. Furthermore, inhibitory potential and ADME profile of MMS was compared with luteolin, a known c-Src kinase inhibitor. RESULTS: Data showed accumulation of sphinganine and other sphingolipids such as C16 sphinganine, phytosphingosine, and ceramide (d18:1/14:0) in the extracellular compartment of GUDF-treated HCT-116 cells. Molecular docking projected c-Src kinase as an inhibitory target of sphinganine. MD simulations projected MMS with strong (-7.1 kcal/mol) and specific (MET341, ASP404) binding to the inhibitory pocket of c-Src kinase. The projected MMS showed comparable inhibitory role and acceptable ADME profile over known inhibitors. CONCLUSION: In summary, our findings highlight the significance of extracellular sphinganine and other sphingolipids, including C16 sphinganine, phytosphingosine, and ceramide (d18:1/14:0), in the context of drug-induced cell death in HCT-116 cancer cells. Furthermore, we demonstrated the importance of extracellular sphinganine and its modified mimetic sphinganine (MMS) as a potential inhibitor of c-Src kinase. These findings suggest that MMS holds promise for future applications in targeted and combinatorial anticancer therapy.


Asunto(s)
Neoplasias , Esfingosina , Esfingosina/análogos & derivados , Humanos , Esfingosina/farmacología , Esfingosina/metabolismo , Proteína Tirosina Quinasa CSK , Simulación del Acoplamiento Molecular , Esfingolípidos/metabolismo , Ceramidas/farmacología , Neoplasias/patología
10.
Cancers (Basel) ; 16(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38398072

RESUMEN

In recent years, the emergence of cancer drug resistance has been one of the crucial tumor hallmarks that are supported by the level of genetic heterogeneity and complexities at cellular levels. Oxidative stress, immune evasion, metabolic reprogramming, overexpression of ABC transporters, and stemness are among the several key contributing molecular and cellular response mechanisms. Topo-active drugs, e.g., doxorubicin and topotecan, are clinically active and are utilized extensively against a wide variety of human tumors and often result in the development of resistance and failure to therapy. Thus, there is an urgent need for an incremental and comprehensive understanding of mechanisms of cancer drug resistance specifically in the context of topo-active drugs. This review delves into the intricate mechanistic aspects of these intracellular and extracellular topo-active drug resistance mechanisms and explores the use of potential combinatorial approaches by utilizing various topo-active drugs and inhibitors of pathways involved in drug resistance. We believe that this review will help guide basic scientists, pre-clinicians, clinicians, and policymakers toward holistic and interdisciplinary strategies that transcend resistance, renewing optimism in the ongoing battle against cancer.

11.
J Maxillofac Oral Surg ; 23(1): 204-209, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38312952

RESUMEN

Background: Internal derangement (ID) of temporomandibular joint (TMJ) is a common temporomandibular disorder (TMD) which causes hypomobility of the joint. Minimally invasive treatment modality like arthrocentesis is used as first-line of management having low morbidity and high efficacy. This prospective randomized comparative study was carried to compare the efficacy of intra-articular injection with sodium hyaluronate (SH) and triamcinolone acetonide (TA) after arthrocentesis in ID of TMJ. Materials and Methods: A total 40 patients diagnosed with ID (stage 1-4) were included in the study and randomly divided in two groups. Twenty patients (group A) received intra-articular injection of SH while 20 patients (group B) received intra-articular injection of TA, after arthrocentesis. The clinical parameters of pain (VAS), Maximum mouth opening (MMO) (mm) and clicking sound (present/absent) were evaluated pre-operatively and at seventh day, 1 month and 3 months post-operatively. Results: There was statistically significant improvement in pain scores in both the groups at all time intervals with SH being superior (p value 0.0086). All the patients showed improved mouth opening at all time intervals, TA being superior but statistically insignificant (p value 0.59). There was reduction in the clicking sound in both the groups which was statistically insignificant at all time intervals. Conclusions: Arthrocentesis followed by intra-articular injection with SH is superior to TA in terms of pain reduction, while TA showed superiority in terms of improved mouth opening.

12.
Environ Sci Pollut Res Int ; 31(8): 12371-12386, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38228952

RESUMEN

In the modern fast-paced lifestyle, time-efficient and nutritionally rich foods like corn and oat have gained popularity for their amino acids and antioxidant contents. The increasing demand for these cereals necessitates higher production which leads to dependency on agrochemicals, which can pose health risks through residual present in the plant products. To first report the phytotoxicity for corn and oat, our study employs QSAR, quantitative Read-Across and quantitative RASAR (q-RASAR). All developed QSAR and q-RASAR models were equally robust (R2 = 0.680-0.762, Q2Loo = 0.593-0.693, Q2F1 = 0.680-0.860) and find their superiority in either oat or corn model, respectively, based on MAE criteria. AD and PRI had been performed which confirm the reliability and predictability of the models. The mechanistic interpretation reveals that the symmetrical arrangement of electronegative atoms and polar groups directly influences the toxicity of compounds. The final phytotoxicity and prioritization are performed by the consensus approach which results into selection of 15 most toxic compounds for both species.


Asunto(s)
Relación Estructura-Actividad Cuantitativa , Zea mays , Avena , Agroquímicos/toxicidad , Consenso , Reproducibilidad de los Resultados , Medición de Riesgo
13.
Curr Mol Med ; 24(2): 264-279, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-36642883

RESUMEN

BACKGROUND: Dietary chemicals and their gut-metabolized products are explored for their anti-proliferative and pro-cell death effects. Dietary and metabolized chemicals are different from ruminants such as goats over humans. METHODS: Loss of cell viability and induction of death due to goat urine DMSO fraction (GUDF) derived chemicals were assessed by routine in vitro assays upon MCF-7 breast cancer cells. Intracellular metabolite profiling of MCF-7 cells treated with goat urine DMSO fraction (GUDF) was performed using an in-house designed vertical tube gel electrophoresis (VTGE) assisted methodology, followed by LC-HRMS. Next, identified intracellular dietary chemicals such as ellagic acid were evaluated for their inhibitory effects against transducers of the c-Raf signaling pathway employing molecular docking and molecular dynamics (MD) simulation. RESULTS: GUDF treatment upon MCF-7 cells displayed significant loss of cell viability and induction of cell death. A set of dietary and metabolized chemicals in the intracellular compartment of MCF-7 cells, such as ellagic acid, 2-hydroxymyristic acid, artelinic acid, 10-amino-decanoic acid, nervonic acid, 2,4-dimethyl-2-eicosenoic acid, 2,3,4'- Trihydroxy,4-Methoxybenzophenone and 9-amino-nonanoic acid were identified. Among intracellular dietary chemicals, ellagic acid displayed a strong inhibitory affinity (-8.7 kcal/mol) against c-Raf kinase. The inhibitory potential of ellagic acid was found to be significantly comparable with a known c-Raf kinase inhibitor sorafenib with overlapping inhibitory site residues (ARG450, GLU425, TRP423, VA403). CONCLUSION: Intracellular dietary-derived chemicals such as ellagic acid are suggested for the induction of cell death in MCF-7 cells. Ellagic acid is predicted as an inhibitor of c-Raf kinase and could be explored as an anti-cancer drug.


Asunto(s)
Antineoplásicos , Dimetilsulfóxido , Animales , Humanos , Ácido Elágico/farmacología , Ácido Elágico/química , Simulación del Acoplamiento Molecular , Cabras , Antineoplásicos/farmacología
14.
Epigenomics ; 15(19): 983-990, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37933586

RESUMEN

The emerging understanding of the super-complex and heterogeneous nature of tumor is well supported by metabolic reprogramming, leading survival advantages. Metabolic reprogramming contributes to tumor responsiveness and resistance to various antitumor drugs. Among the numerous adaptations made by cancer cells in response to drug-induced perturbations, key metabolic alterations involving amino acids and acetylated derivatives of amino acids have received special attention. Considering these implications discussed, targeting cancer-associated metabolic pathways, particularly those involving acetylated amino acids, emerges as an important avenue in the pursuit of combinatorial anticancer strategies. As a result, the introduction of mimetic acetylated amino acids represents a promising new class of inhibitors that could be used alongside traditional chemotherapy agents.


Cancer cells are known to show complexity and resistance to treatment, including chemotherapies and radiation therapies. The ability of cancer cells to overcome effects of anticancer drugs are related to metabolic changes. One of key forms of metabolic changes is in the form of acetylation of amino acids that promote survival of cancer cells in various settings in cancer patients. Therefore, a better understanding of metabolic changes in the context of acetylation of amino acids could help better manage the treatment of cancer patients.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Aminoácidos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Redes y Vías Metabólicas , Epigénesis Genética
15.
Sensors (Basel) ; 23(21)2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37960626

RESUMEN

The Internet of Things (IoT) is the most abundant technology in the fields of manufacturing, automation, transportation, robotics, and agriculture, utilizing the IoT's sensors-sensing capability. It plays a vital role in digital transformation and smart revolutions in critical infrastructure environments. However, handling heterogeneous data from different IoT devices is challenging from the perspective of security and privacy issues. The attacker targets the sensor communication between two IoT devices to jeopardize the regular operations of IoT-based critical infrastructure. In this paper, we propose an artificial intelligence (AI) and blockchain-driven secure data dissemination architecture to deal with critical infrastructure security and privacy issues. First, we reduced dimensionality using principal component analysis (PCA) and explainable AI (XAI) approaches. Furthermore, we applied different AI classifiers such as random forest (RF), decision tree (DT), support vector machine (SVM), perceptron, and Gaussian Naive Bayes (GaussianNB) that classify the data, i.e., malicious or non-malicious. Furthermore, we employ an interplanetary file system (IPFS)-driven blockchain network that offers security to the non-malicious data. In addition, to strengthen the security of AI classifiers, we analyze data poisoning attacks on the dataset that manipulate sensitive data and mislead the classifier, resulting in inaccurate results from the classifiers. To overcome this issue, we provide an anomaly detection approach that identifies malicious instances and removes the poisoned data from the dataset. The proposed architecture is evaluated using performance evaluation metrics such as accuracy, precision, recall, F1 score, and receiver operating characteristic curve (ROC curve). The findings show that the RF classifier transcends other AI classifiers in terms of accuracy, i.e., 98.46%.

16.
J Cancer Prev ; 28(3): 115-130, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37830116

RESUMEN

There is a lack of evidence regarding the use of betel quid (BQ) and its potential contribution to oral cancer. Limited attention has been directed towards investigating the involvement of BQ-derived organic acids in the modulation of metabolic-epigenomic pathways associated with oral cancer initiation and progression. We employed novel protocol for preparing saliva-amalgamated BQ filtrate (SABFI) that mimics the oral cavity environment. SABFI and saliva control were further purified by an in-house developed vertical tube gel electrophoresis tool. The purified SABFI was then subjected to liquid chromatography-high resolution mass spectrometry analysis to identify the presence of organic acids. Profiling of SABFI showed a pool of prominent organic acids such as citric acid. malic acid, fumaric acid, 2-methylcitric acid, 2-hydroxyglutarate, cis-aconitic acid, succinic acid, 2-hydroxyglutaric acid lactone, tartaric acid and ß-ketoglutaric acid. SABFI showed anti-proliferative and early apoptosis effects in oral cancer cells. Molecular docking and molecular dynamics simulations predicted that SABFI-derived organic acids as potential inhibitors of the epigenetic demethylase enzyme, Ten-Eleven Translocation-2 (TET2). By binding to the active site of α-ketoglutarate, a known substrate of TET2, these organic acids are likely to act as competitive inhibitors. This study reports a novel approach to study SABFI-derived organic acids that could mimic the chemical composition of BQ in the oral cavity. These SABFI-derived organic acids projected as inhibitors of TET2 and could be explored for their role oral cancer.

17.
Curr Protein Pept Sci ; 24(8): 684-699, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37565551

RESUMEN

BACKGROUND: The oral cancer microenvironment plays an important role in the development and progression of the disease which depicts the heterogeneous nature of diseases. Several cellular and non-cellular factors, including dipeptides, have been reported to drive tumor progression and metastasis. Among various secreted molecules in the tumor microenvironment, prolylhydroxyproline (Pro-Hyp) is a collagen-degraded product with specific relevance to fibrosis and oral cancer. However, the detection of Pro-Hyp in the nails of oral cancer patients is a potential biomarker, and our understanding of the biological relevance of Pro-Hyp is highly limited. METHODS: Here, the authors have attempted to use a novel and in-house vertical tube gel electrophoresis (VTGE) protocol to evaluate the level of Pro-Hyp in the nails of oral cancer patients and healthy subjects. Furthermore, we employed molecular docking and molecular dynamics (MD) simulations to predict the biological function of Pro-Hyp. ADME profiles such as the druglikeness and leadlikeness of Pro-Hyp and a known PLC-ß2 activator, m-3M3FBS, were evaluated by the SWISS-ADME server. RESULTS: We report that among various key metabolites, Pro-Hyp, a dipeptide, is reduced in the nails of oral cancer patients. Molecular docking and MD simulations helped to suggest the potential role of Pro-Hyp as an activator of Phospholipase C-ß2 (PLC-ß2). Pro-Hyp displayed good binding affinity (-7.6 kcal/mol) with specific interactions by a conventional hydrogen bond with key residues, such as HIS311, HIS312, VAL641, and GLU743. MD simulations showed that the activator binding residues and stability of complexes are similar to the well-known activator m-3M3FBS of PLC-ß2. ADME profiles such as the druglikeness and leadlikeness of Pro-Hyp were found to be highly comparable and even better than those of m-3M3FBS. CONCLUSION: This study is one of the first reports on Pro-Hyp as a metabolite biomarker in the nails of oral cancer patients. Furthermore, the implications of Pro-Hyp are proposed to activate PLC-ß2 as a pro-tumor signaling cascade. In the future, diagnostic and therapeutic approaches may be explored as biomarkers and mimetic of Pro-Hyp.

18.
Front Artif Intell ; 6: 1220744, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37560445

RESUMEN

Recent developments in various domains have led to a growing interest in the potential of artificial intelligence to enhance our lives and environments. In particular, the application of artificial intelligence in the management of complex human diseases, such as cancer, has garnered significant attention. The evolution of artificial intelligence is thought to be influenced by multiple factors, including human intervention and environmental factors. Similarly, tumors, being heterogeneous and complex diseases, continue to evolve due to changes in the physical, chemical, and biological environment. Additionally, the concept of cellular intelligence within biological systems has been recognized as a potential attribute of biological entities. Therefore, it is plausible that the tumor intelligence present in cancer cells of affected individuals could undergo super-evolution due to changes in the pro-tumor environment. Thus, a comparative analysis of the evolution of artificial intelligence and super-complex tumor intelligence could yield valuable insights to develop better artificial intelligence-based tools for cancer management.

19.
Plant Cell Environ ; 46(11): 3501-3517, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37427826

RESUMEN

Plants deposit lignin in the secondary cell wall as a common response to drought and pathogen attacks. Cell wall localised multicopper oxidase family enzymes LACCASES (LACs) catalyse the formation of monolignol radicals and facilitate lignin formation. We show an upregulation of the expression of several LAC genes and a downregulation of microRNA397 (CamiR397) in response to natural drought in chickpea roots. CamiR397 was found to target LAC4 and LAC17L out of twenty annotated LACs in chickpea. CamiR397 and its target genes are expressed in the root. Overexpression of CamiR397 reduced expression of LAC4 and LAC17L and lignin deposition in chickpea root xylem causing reduction in xylem wall thickness. Downregulation of CamiR397 activity by expressing a short tandem target mimic (STTM397) construct increased root lignin deposition in chickpea. CamiR397-overexpressing and STTM397 chickpea lines showed sensitivity and tolerance, respectively, towards natural drought. Infection with a fungal pathogen Macrophomina phaseolina, responsible for dry root rot (DRR) disease in chickpea, induced local lignin deposition and LAC gene expression. CamiR397-overexpressing and STTM397 chickpea lines showed more sensitivity and tolerance, respectively, to DRR. Our results demonstrated the regulatory role of CamiR397 in root lignification during drought and DRR in an agriculturally important crop chickpea.

20.
Protoplasma ; 260(5): 1437-1451, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37131068

RESUMEN

Chickpea is considered recalcitrant to in vitro tissue culture amongst all edible legumes. The clustered, regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-based genome editing in chickpea can remove the bottleneck of limited genetic variation in this cash crop, which is rich in nutrients and protein. However, generating stable mutant lines using CRISPR/Cas9 requires efficient and highly reproducible transformation protocols. As an attempt to solve this problem, we developed a modified and optimized protocol for chickpea transformation. This study transformed the single cotyledon half-embryo explants using CaMV35S promoter to drive two marker genes (ß-glucuronidase gene; GUS and green fluorescent protein; GFP) through binary vectors pBI101.2 and modified pGWB2, respectively. These vectors were delivered in the explants through three different strains of Agrobacterium tumefaciens, viz., GV3101, EHA105, and LBA4404. We found better efficiency with the strain GV3101 (17.56%) compared with two other strains, i.e., 8.54 and 5.43%, respectively. We recorded better regeneration frequencies in plant tissue culture for the constructs GUS and GFP, i.e., 20.54% and 18.09%, respectively. The GV3101 was further used for the transformation of the genome editing construct. For the development of genome-edited plants, we used this modified protocol. We also used a modified binary vector pPZP200 by introducing a CaMV35S-driven chickpea codon-optimized SpCas9 gene. The promoter of the Medicago truncatula U6.1 snRNA gene was used to drive the guide RNA cassettes. This cassette targeted and edited the chickpea phytoene desaturase (CaPDS) gene. A single gRNA was found sufficient to achieve high efficiency (42%) editing with the generation of PDS mutants with albino phenotypes. A simple, rapid, highly reproducible, stable transformation and CRISPR/Cas9-based genome editing system for chickpea was established. This study aimed to demonstrate this system's applicability by performing a gene knockout of the chickpea PDS gene using an improved chickpea transformation protocol for the first time.


Asunto(s)
Cicer , Edición Génica , Edición Génica/métodos , Sistemas CRISPR-Cas/genética , Cicer/genética , Codón , Agrobacterium tumefaciens , Genoma de Planta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA