Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Sci Data ; 11(1): 482, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730023

RESUMEN

Prolonged and over-excessive interaction with cyberspace poses a threat to people's health and leads to the occurrence of Cyber-Syndrome, which covers not only physiological but also psychological disorders. This paper aims to create a tree-shaped gold-standard corpus that annotates the Cyber-Syndrome, clinical manifestations, and acupoints that can alleviate their symptoms or signs, designating this corpus as CS-A. In the CS-A corpus, this paper defines six entities and relations subject to annotation. There are 448 texts to annotate in total manually. After three rounds of updating the annotation guidelines, the inter-annotator agreement (IAA) improved significantly, resulting in a higher IAA score of 86.05%. The purpose of constructing CS-A corpus is to increase the popularity of Cyber-Syndrome and draw attention to its subtle impact on people's health. Meanwhile, annotated corpus promotes the development of natural language processing technology. Some model experiments can be implemented based on this corpus, such as optimizing and improving models for discontinuous entity recognition, nested entity recognition, etc. The CS-A corpus has been uploaded to figshare.


Asunto(s)
Puntos de Acupuntura , Humanos , Procesamiento de Lenguaje Natural , Computadores , Internet
2.
Comput Biol Med ; 173: 108331, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38522252

RESUMEN

Medical image segmentation is a focus research and foundation in developing intelligent medical systems. Recently, deep learning for medical image segmentation has become a standard process and succeeded significantly, promoting the development of reconstruction, and surgical planning of disease diagnosis. However, semantic learning is often inefficient owing to the lack of supervision of feature maps, resulting in that high-quality segmentation models always rely on numerous and accurate data annotations. Learning robust semantic representation in latent spaces remains a challenge. In this paper, we propose a novel semi-supervised learning framework to learn vital attributes in medical images, which constructs generalized representation from diverse semantics to realize medical image segmentation. We first build a self-supervised learning part that achieves context recovery by reconstructing space and intensity of medical images, which conduct semantic representation for feature maps. Subsequently, we combine semantic-rich feature maps and utilize simple linear semantic transformation to convert them into image segmentation. The proposed framework was tested using five medical segmentation datasets. Quantitative assessments indicate the highest scores of our method on IXI (73.78%), ScaF (47.50%), COVID-19-Seg (50.72%), PC-Seg (65.06%), and Brain-MR (72.63%) datasets. Finally, we compared our method with the latest semi-supervised learning methods and obtained 77.15% and 75.22% DSC values, respectively, ranking first on two representative datasets. The experimental results not only proved that the proposed linear semantic transformation was effectively applied to medical image segmentation, but also presented its simplicity and ease-of-use to pursue robust segmentation in semi-supervised learning. Our code is now open at: https://github.com/QingYunA/Linear-Semantic-Transformation-for-Semi-Supervised-Medical-Image-Segmentation.


Asunto(s)
COVID-19 , Semántica , Humanos , Encéfalo , Aprendizaje Automático Supervisado , Procesamiento de Imagen Asistido por Computador
3.
IEEE J Biomed Health Inform ; 28(5): 2569-2580, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38498747

RESUMEN

Acupoints (APs) prove to have positive effects on disease diagnosis and treatment, while intelligent techniques for the automatic detection of APs are not yet mature, making them more dependent on manual positioning. In this paper, we realize the skin conductance-based APs and non-APs recognition with machine learning, which could assist in APs detection and localization in clinical practice. Firstly, we collect skin conductance of traditional Five-Shu Point and their corresponding non-APs with wearable sensors, establishing a dataset containing over 36000 samples of 12 different AP types. Then, electrical features are extracted from the time domain, frequency domain, and nonlinear perspective respectively, following which typical machine learning algorithms (SVM, RF, KNN, NB, and XGBoost) are demonstrated to recognize APs and non-APs. The results demonstrate XGBoost with the best precision of 66.38%. Moreover, we also quantify the impacts of the differences among AP types and individuals, and propose a pairwise feature generation method to weaken the impacts on recognition precision. By using generated pairwise features, the recognition precision could be improved by 7.17%. The research systematically realizes the automatic recognition of APs and non-APs, and is conducive to pushing forward the intelligent development of APs and Traditional Chinese Medicine theories.


Asunto(s)
Puntos de Acupuntura , Respuesta Galvánica de la Piel , Aprendizaje Automático , Procesamiento de Señales Asistido por Computador , Humanos , Respuesta Galvánica de la Piel/fisiología , Algoritmos , Masculino , Dispositivos Electrónicos Vestibles , Femenino , Adulto , Adulto Joven
4.
Artículo en Inglés | MEDLINE | ID: mdl-37027660

RESUMEN

Using portable tools to monitor and identify daily activities has increasingly become a focus of digital healthcare, especially for elderly care. One of the difficulties in this area is the excessive reliance on labeled activity data for corresponding recognition modeling. Labeled activity data is expensive to collect. To address this challenge, we propose an effective and robust semi-supervised active learning method, called CASL, which combines the mainstream semi-supervised learning method with a mechanism of expert collaboration. CASL takes a user's trajectory as the only input. In addition, CASL uses expert collaboration to judge the valuable samples of a model to further enhance its performance. CASL relies on very few semantic activities, outperforms all baseline activity recognition methods, and is close to the performance of supervised learning methods. On the adlnormal dataset with 200 semantic activities data, CASL achieved an accuracy of 89.07%, supervised learning has 91.77%. Our ablation study validated the components in our CASL using a query strategy and a data fusion approach.

5.
Comput Methods Programs Biomed ; 233: 107475, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36931018

RESUMEN

PURPOSE: Cerebrovascular segmentation from time-of-flight magnetic resonance angiography (TOF-MRA) is important but challenging for the simulation and measurement of cerebrovascular diseases. Recently, deep learning has promoted the rapid development of cerebrovascular segmentation. However, model optimization relies on voxel or regional punishment and lacks global awareness and interpretation from the texture and edge. To overcome the limitations of the existing methods, we propose a new cerebrovascular segmentation method to obtain more refined structures. METHODS: In this paper, we propose a new adversarial model that achieves segmentation using segmentation model and filters the results using discriminator. Considering the sample imbalance in cerebrovascular imaging, we separated the TOF-MRA images and utilized high- and low-frequency images to enhance the texture and edge representation. The encoder weight sharing from the segmentation model not only saves the model parameters, but also strengthens the integration and separation correlation. Diversified discrimination enhances the robustness and regularization of the model. RESULTS: The adversarial model was tested using two cerebrovascular datasets. It scored 82.26% and 73.38%, respectively, ranking first on both datasets. The results show that our method not only outperforms the recent cerebrovascular segmentation model, but also surpasses the common adversarial models. CONCLUSION: Our adversarial model focuses on improving the extraction ability of the model on texture and edge, thereby achieving awareness of the global cerebrovascular topology. Therefore, we obtained an accurate and robust cerebrovascular segmentation. This framework has potential applications in many imaging fields, particularly in the application of sample imbalance. Our code is available at the website https://github.com/MontaEllis/ISA-model.


Asunto(s)
Algoritmos , Angiografía por Resonancia Magnética , Angiografía por Resonancia Magnética/métodos , Imagen por Resonancia Magnética , Simulación por Computador , Procesamiento de Imagen Asistido por Computador/métodos
6.
Phys Med Biol ; 68(3)2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36634367

RESUMEN

Objective. Bone segmentation is a critical step in screw placement navigation. Although the deep learning methods have promoted the rapid development for bone segmentation, the local bone separation is still challenging due to irregular shapes and similar representational features.Approach. In this paper, we proposed the pairwise attention-enhanced adversarial model (Pair-SegAM) for automatic bone segmentation in computed tomography images, which includes the two parts of the segmentation model and discriminator. Considering that the distributions of the predictions from the segmentation model contains complicated semantics, we improve the discriminator to strengthen the awareness ability of the target region, improving the parsing of semantic information features. The Pair-SegAM has a pairwise structure, which uses two calculation mechanics to set up pairwise attention maps, then we utilize the semantic fusion to filter unstable regions. Therefore, the improved discriminator provides more refinement information to capture the bone outline, thus effectively enhancing the segmentation models for bone segmentation.Main results. To test the Pair-SegAM, we selected the two bone datasets for assessment. We evaluated our method against several bone segmentation models and latest adversarial models on the both datasets. The experimental results prove that our method not only exhibits superior bone segmentation performance, but also states effective generalization.Significance. Our method provides a more efficient segmentation of specific bones and has the potential to be extended to other semantic segmentation domains.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Tomografía Computarizada por Rayos X , Procesamiento de Imagen Asistido por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Huesos/diagnóstico por imagen , Semántica
7.
Artif Intell Rev ; 56(5): 3951-3985, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36160367

RESUMEN

Federated learning (FL) is a promising framework for distributed machine learning that trains models without sharing local data while protecting privacy. FL exploits the concept of collaborative learning and builds privacy-preserving models. Nevertheless, the integral features of FL are fraught with problems, such as the disclosure of private information, the unreliability of uploading model parameters to the server, the communication cost, etc. Blockchain, as a decentralized technology, is able to improve the performance of FL without requiring a centralized server and also solves the above problems. In this paper, a systematic literature review on the integration of Blockchain in federated learning was considered with the analysis of the existing FL problems that can be compensated. Through carefully screening, most relevant studies are included and research questions cover the potential security and privacy attacks in traditional federated learning that can be solved by blockchain as well as the characteristics of Blockchain-based FL. In addition, the latest Blockchain-based approaches to federated learning have been studied in-depth in terms of security and privacy, records and rewards, and verification and accountability. Furthermore, open issues related to the combination of Blockchain and FL are discussed. Finally, future research directions for the robust development of Blockchain-based FL systems are proposed.

8.
Brain Sci ; 12(2)2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35203991

RESUMEN

Brain neural activity decoding is an important branch of neuroscience research and a key technology for the brain-computer interface (BCI). Researchers initially developed simple linear models and machine learning algorithms to classify and recognize brain activities. With the great success of deep learning on image recognition and generation, deep neural networks (DNN) have been engaged in reconstructing visual stimuli from human brain activity via functional magnetic resonance imaging (fMRI). In this paper, we reviewed the brain activity decoding models based on machine learning and deep learning algorithms. Specifically, we focused on current brain activity decoding models with high attention: variational auto-encoder (VAE), generative confrontation network (GAN), and the graph convolutional network (GCN). Furthermore, brain neural-activity-decoding-enabled fMRI-based BCI applications in mental and psychological disease treatment are presented to illustrate the positive correlation between brain decoding and BCI. Finally, existing challenges and future research directions are addressed.

9.
Healthcare (Basel) ; 9(11)2021 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-34828494

RESUMEN

Fall is a major problem leading to serious injuries in geriatric populations. Sensor-based fall risk assessment is one of the emerging technologies to identify people with high fall risk by sensors, so as to implement fall prevention measures. Research on this domain has recently made great progress, attracting the growing attention of researchers from medicine and engineering. However, there is a lack of studies on this topic which elaborate the state of the art. This paper presents a comprehensive survey to discuss the development and current status of various aspects of sensor-based fall risk assessment. Firstly, we present the principles of fall risk assessment. Secondly, we show knowledge of fall risk monitoring techniques, including wearable sensor based and non-wearable sensor based. After that we discuss features which are extracted from sensors in fall risk assessment. Then we review the major methods of fall risk modeling and assessment. We also discuss some challenges and promising directions in this field at last.

10.
PeerJ Comput Sci ; 7: e455, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33954238

RESUMEN

Access control is a critical aspect for improving the privacy and security of IoT systems. A consortium is a public or private association or a group of two or more institutes, businesses, and companies that collaborate to achieve common goals or form a resource pool to enable the sharing economy aspect. However, most access control methods are based on centralized solutions, which may lead to problems like data leakage and single-point failure. Blockchain technology has its intrinsic feature of distribution, which can be used to tackle the centralized problem of traditional access control schemes. Nevertheless, blockchain itself comes with certain limitations like the lack of scalability and poor performance. To bridge the gap of these problems, here we present a decentralized capability-based access control architecture designed for IoT consortium networks named IoT-CCAC. A blockchain-based database is utilized in our solution for better performance since it exhibits favorable features of both blockchain and conventional databases. The performance of IoT-CCAC is evaluated to demonstrate the superiority of our proposed architecture. IoT-CCAC is a secure, salable, effective solution that meets the enterprise and business's needs and adaptable for different IoT interoperability scenarios.

11.
IEEE J Transl Eng Health Med ; 8: 1400411, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32537264

RESUMEN

Dementia is a severe disease threatening ageing societies, which not only causes great harm to patients both physically and psychologically but also places a heavy burden on patients' families. Medications have been used for the treatment of dementia but with little success. However, serious games, as a new form of dementia therapy, stand out from various therapeutic methods and pave the way for dementia treatment. In the field of serious games for dementia care (SGDC) in ageing societies, there exists abundant research related to this topic. While, a detailed review of the development route and a category framework for characteristics of dementia are still needed. Besides, due to the large number of games, it is difficult to select out effective ones. Yet, there is no unified and comprehensive assessment methods for SGDC. So a reliable assessment model is worth studying. In this paper, we review these existing research work on SGDC from two perspectives: (1) the development of SGDC; (2) the different symptoms in different dementia stages. We also propose a comprehensive and professional assessment model of the therapeutic effectiveness of SGDC to compensate for the simplicity of existing assessment methods. Finally, a discussion related to SGDC is presented.

12.
Sensors (Basel) ; 20(2)2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31952172

RESUMEN

Electronic healthcare (eHealth) identity management (IdM) is a pivotal feature in the eHealth system. Distributed ledger technology (DLT) is an emerging technology that can achieve agreements of transactional data states in a decentralized way. Building identity management systems using Blockchain can enable patients to fully control their own identity and provide increased confidence in data immutability and availability. This paper presents the state of the art of decentralized identity management using Blockchain and highlights the possible opportunities for adopting the decentralized identity management approaches for future health identity systems. First, we summarize eHealth identity management scenarios. Furthermore, we investigate the existing decentralized identity management solutions and present decentralized identity models. In addition, we discuss the current decentralized identity projects and identify new challenges based on the existing solutions and the limitations when applying it to healthcare as a particular use case.

13.
Sensors (Basel) ; 19(17)2019 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-31480359

RESUMEN

With the development of the Internet-of-Things (IoT) technology, the applications of gas sensors in the fields of smart homes, wearable devices, and smart mobile terminals have developed by leaps and bounds. In such complex sensing scenarios, the gas sensor shows the defects of cross sensitivity and low selectivity. Therefore, smart gas sensing methods have been proposed to address these issues by adding sensor arrays, signal processing, and machine learning techniques to traditional gas sensing technologies. This review introduces the reader to the overall framework of smart gas sensing technology, including three key points; gas sensor arrays made of different materials, signal processing for drift compensation and feature extraction, and gas pattern recognition including Support Vector Machine (SVM), Artificial Neural Network (ANN), and other techniques. The implementation, evaluation, and comparison of the proposed solutions in each step have been summarized covering most of the relevant recently published studies. This review also highlights the challenges facing smart gas sensing technology represented by repeatability and reusability, circuit integration and miniaturization, and real-time sensing. Besides, the proposed solutions, which show the future directions of smart gas sensing, are explored. Finally, the recommendations for smart gas sensing based on brain-like sensing are provided in this paper.

14.
Sensors (Basel) ; 18(11)2018 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-30373268

RESUMEN

Currently, there is a growing demand for the use of communication network bandwidth for the Internet of Things (IoT) within the cyber-physical-social system (CPSS), while needing progressively more powerful technologies for using scarce spectrum resources. Then, cognitive radio networks (CRNs) as one of those important solutions mentioned above, are used to achieve IoT effectively. Generally, dynamic resource allocation plays a crucial role in the design of CRN-aided IoT systems. Aiming at this issue, orthogonal frequency division multiplexing (OFDM) has been identified as one of the successful technologies, which works with a multi-carrier parallel radio transmission strategy. In this article, through the use of swarm intelligence paradigm, a solution approach is accordingly proposed by employing an efficient Jaya algorithm, called PA-Jaya, to deal with the power allocation problem in cognitive OFDM radio networks for IoT. Because of the algorithm-specific parameter-free feature in the proposed PA-Jaya algorithm, a satisfactory computational performance could be achieved in the handling of this problem. For this optimization problem with some constraints, the simulation results show that compared with some popular algorithms, the efficiency of spectrum utilization could be further improved by using PA-Jaya algorithm with faster convergence speed, while maximizing the total transmission rate.

15.
Sensors (Basel) ; 18(1)2018 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-29361772

RESUMEN

With the development of Internet of Things (IoT), more and more sensors, actuators and mobile devices have been deployed into our daily lives. The result is that tremendous data are produced and it is urgent to dig out hidden information behind these volumous data. However, IoT data generated by multi-modal sensors or devices show great differences in formats, domains and types, which poses challenges for machines to process and understand. Therefore, adding semantics to Internet of Things becomes an overwhelming tendency. This paper provides a systematic review of data semantization in IoT, including its backgrounds, processing flows, prevalent techniques, applications, existing challenges and open issues. It surveys development status of adding semantics to IoT data, mainly referring to sensor data and points out current issues and challenges that are worth further study.

16.
Sensors (Basel) ; 17(4)2017 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-28338632

RESUMEN

Wireless Sensor Networks (WSNs) consist of lightweight devices to measure sensitive data that are highly vulnerable to security attacks due to their constrained resources. In a similar manner, the internet-based lightweight devices used in the Internet of Things (IoT) are facing severe security and privacy issues because of the direct accessibility of devices due to their connection to the internet. Complex and resource-intensive security schemes are infeasible and reduce the network lifetime. In this regard, we have explored the polynomial distribution-based key establishment schemes and identified an issue that the resultant polynomial value is either storage intensive or infeasible when large values are multiplied. It becomes more costly when these polynomials are regenerated dynamically after each node join or leave operation and whenever key is refreshed. To reduce the computation, we have proposed an Efficient Key Management (EKM) scheme for multiparty communication-based scenarios. The proposed session key management protocol is established by applying a symmetric polynomial for group members, and the group head acts as a responsible node. The polynomial generation method uses security credentials and secure hash function. Symmetric cryptographic parameters are efficient in computation, communication, and the storage required. The security justification of the proposed scheme has been completed by using Rubin logic, which guarantees that the protocol attains mutual validation and session key agreement property strongly among the participating entities. Simulation scenarios are performed using NS 2.35 to validate the results for storage, communication, latency, energy, and polynomial calculation costs during authentication, session key generation, node migration, secure joining, and leaving phases. EKM is efficient regarding storage, computation, and communication overhead and can protect WSN-based IoT infrastructure.

17.
Sci Rep ; 5: 18307, 2015 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-26674338

RESUMEN

A new physical model of the gate controlled Schottky barrier height (SBH) lowering in top-gated graphene field-effect transistors (GFETs) under saturation bias condition is proposed based on the energy conservation equation with the balance assumption. The theoretical prediction of the SBH lowering agrees well with the experimental data reported in literatures. The reduction of the SBH increases with the increasing of gate voltage and relative dielectric constant of the gate oxide, while it decreases with the increasing of oxide thickness, channel length and acceptor density. The magnitude of the reduction is slightly enhanced under high drain voltage. Moreover, it is found that the gate oxide materials with large relative dielectric constant (>20) have a significant effect on the gate controlled SBH lowering, implying that the energy relaxation of channel electrons should be taken into account for modeling SBH in GFETs.

18.
Nanoscale Res Lett ; 10(1): 1039, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26264688

RESUMEN

We report theoretical study of the effects of energy relaxation on the tunneling current through the oxide layer of a two-dimensional graphene field-effect transistor. In the channel, when three-dimensional electron thermal motion is considered in the Schrödinger equation, the gate leakage current at a given oxide field largely increases with the channel electric field, electron mobility, and energy relaxation time of electrons. Such an increase can be especially significant when the channel electric field is larger than 1 kV/cm. Numerical calculations show that the relative increment of the tunneling current through the gate oxide will decrease with increasing the thickness of oxide layer when the oxide is a few nanometers thick. This highlights that energy relaxation effect needs to be considered in modeling graphene transistors.

19.
PLoS One ; 10(6): e0128438, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26039589

RESUMEN

Influence of the energy relaxation of the channel electrons on the performance of AlGaN/GaN high-electron mobility transistors (HEMTs) has been investigated using self-consistent solution to the coupled Schrödinger equation and Poisson equation. The first quantized energy level in the inversion layer rises and the average channel electron density decreases when the channel electric field increases from 20 kV/cm to 120 kV/cm. This research also demonstrates that the energy relaxation of the channel electrons can lead to current collapse and suggests that the energy relaxation should be considered in modeling the performance of AlGaN/GaN HEMTs such as, the gate leakage current, threshold voltage, source-drain current, capacitance-voltage curve, etc.


Asunto(s)
Compuestos de Aluminio/química , Electrones , Galio/química , Transistores Electrónicos , Electricidad , Electrónica/instrumentación , Humanos
20.
Sensors (Basel) ; 12(7): 9635-65, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23012563

RESUMEN

Sensing technology has been widely investigated and utilized for gas detection. Due to the different applicability and inherent limitations of different gas sensing technologies, researchers have been working on different scenarios with enhanced gas sensor calibration. This paper reviews the descriptions, evaluation, comparison and recent developments in existing gas sensing technologies. A classification of sensing technologies is given, based on the variation of electrical and other properties. Detailed introduction to sensing methods based on electrical variation is discussed through further classification according to sensing materials, including metal oxide semiconductors, polymers, carbon nanotubes, and moisture absorbing materials. Methods based on other kinds of variations such as optical, calorimetric, acoustic and gas-chromatographic, are presented in a general way. Several suggestions related to future development are also discussed. Furthermore, this paper focuses on sensitivity and selectivity for performance indicators to compare different sensing technologies, analyzes the factors that influence these two indicators, and lists several corresponding improved approaches.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA