Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Am J Respir Crit Care Med ; 208(9): 930-943, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37695863

RESUMEN

Rationale: CFTR (cystic fibrosis transmembrane conductance regulator) modulator drugs restore function to mutant channels in patients with cystic fibrosis (CF) and lead to improvements in body mass index and lung function. Although it is anticipated that early childhood treatment with CFTR modulators will significantly delay or even prevent the onset of advanced lung disease, lung neutrophils and inflammatory cytokines remain high in patients with CF with established lung disease despite modulator therapy, underscoring the need to identify and ultimately target the sources of this inflammation in CF lungs. Objectives: To determine whether CF lungs, like chronic obstructive pulmonary disease (COPD) lungs, harbor potentially pathogenic stem cell "variants" distinct from the normal p63/Krt5 lung stem cells devoted to alveolar fates, to identify specific variants that might contribute to the inflammatory state of CF lungs, and to assess the impact of CFTR genetic complementation or CFTR modulators on the inflammatory variants identified herein. Methods: Stem cell cloning technology developed to resolve pathogenic stem cell heterogeneity in COPD and idiopathic pulmonary fibrosis lungs was applied to end-stage lungs of patients with CF (three homozygous CFTR:F508D, one CFTR F508D/L1254X; FEV1, 14-30%) undergoing therapeutic lung transplantation. Single-cell-derived clones corresponding to the six stem cell clusters resolved by single-cell RNA sequencing of these libraries were assessed by RNA sequencing and xenografting to monitor inflammation, fibrosis, and mucin secretion. The impact of CFTR activity on these variants after CFTR gene complementation or exposure to CFTR modulators was assessed by molecular and functional studies. Measurements and Main Results: End-stage CF lungs display a stem cell heterogeneity marked by five predominant variants in addition to the normal lung stem cell, of which three are proinflammatory both at the level of gene expression and their ability to drive neutrophilic inflammation in xenografts in immunodeficient mice. The proinflammatory functions of these three variants were unallayed by genetic or pharmacological restoration of CFTR activity. Conclusions: The emergence of three proinflammatory stem cell variants in CF lungs may contribute to the persistence of lung inflammation in patients with CF with advanced disease undergoing CFTR modulator therapy.


Asunto(s)
Fibrosis Quística , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Preescolar , Animales , Ratones , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Pulmón/patología , Enfermedad Pulmonar Obstructiva Crónica/patología , Inflamación/metabolismo
2.
STAR Protoc ; 1(2)2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-33015646

RESUMEN

The plurality of clonogenic cells derived from human lung includes a spectrum of diverse p63+ stem cells responsible for the regeneration of normal epithelial tissue and disease-associated metaplastic lesions. Here, we report protocols for the cloning, expansion, and characterization of these stem cell variants, which in general assist in analyses of stem cell heterogeneity, genome editing, drug screening, and regenerative medicine. For complete details on the use and execution of this protocol, please refer to Kumar et al. (2011), Zuo et al. (2015), and Rao et al. (2020).


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Epiteliales/citología , Pulmón/citología , Medicina Regenerativa/métodos , Células Madre/citología , Animales , Células Cultivadas , Células Clonales/citología , Femenino , Humanos , Masculino , Ratones
3.
Cell ; 181(4): 848-864.e18, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32298651

RESUMEN

Chronic obstructive pulmonary disease (COPD) is a progressive condition of chronic bronchitis, small airway obstruction, and emphysema that represents a leading cause of death worldwide. While inflammation, fibrosis, mucus hypersecretion, and metaplastic epithelial lesions are hallmarks of this disease, their origins and dependent relationships remain unclear. Here we apply single-cell cloning technologies to lung tissue of patients with and without COPD. Unlike control lungs, which were dominated by normal distal airway progenitor cells, COPD lungs were inundated by three variant progenitors epigenetically committed to distinct metaplastic lesions. When transplanted to immunodeficient mice, these variant clones induced pathology akin to the mucous and squamous metaplasia, neutrophilic inflammation, and fibrosis seen in COPD. Remarkably, similar variants pre-exist as minor constituents of control and fetal lung and conceivably act in normal processes of immune surveillance. However, these same variants likely catalyze the pathologic and progressive features of COPD when expanded to high numbers.


Asunto(s)
Pulmón/patología , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Adulto , Anciano , Animales , Femenino , Fibrosis/fisiopatología , Humanos , Inflamación/patología , Pulmón/metabolismo , Masculino , Metaplasia/fisiopatología , Ratones , Persona de Mediana Edad , Neutrófilos/inmunología , Neumonía/patología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Análisis de la Célula Individual/métodos , Células Madre/metabolismo
4.
Nat Protoc ; 15(5): 1612-1627, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32238950

RESUMEN

'Adult' or 'somatic' stem cells harbor an intrinsic ability to regenerate tissues. Heterogeneity of such stem cells along the gastrointestinal tract yields the known segmental specificity of this organ and may contribute to the pathology of certain enteric conditions. Here we detail technology for the generation of 'libraries' of clonogenic cells from 1-mm-diamter endoscopic biopsy samples from the human gastrointestinal tract. Each of the 150-300 independent clones in a typical stem cell library can be clonally expanded to billions of cells in a few weeks while maintaining genomic stability and the ability to undergo multipotent differentiation to the specific epithelia from which the sample originated. The key to this methodology is the intrinsic immortality of normal intestinal stem cells (ISCs) and culture systems that maintain them as highly immature, ground-state ISCs marked by a single-cell clonogenicity of 70% and a corresponding 250-fold proliferative advantage over spheroid technologies. Clonal approaches such as this enhance the resolution of molecular genetics, make genome editing easier, and may be useful in regenerative medicine, unravelling heterogeneity in disease, and facilitating drug discovery.


Asunto(s)
Células Madre Adultas/fisiología , Técnicas de Cultivo de Célula , Mucosa Intestinal/citología , Células 3T3 , Animales , Biopsia , Endoscopía Gastrointestinal , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA