Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Mol Cancer Ther ; 22(1): 12-24, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36279567

RESUMEN

Innate and adaptive resistance to cancer therapies, such as chemotherapies, molecularly targeted therapies, and immune-modulating therapies, is a major issue in clinical practice. Subpopulations of tumor cells expressing the receptor tyrosine kinase AXL become enriched after treatment with antimitotic drugs, causing tumor relapse. Elevated AXL expression is closely associated with drug resistance in clinical samples, suggesting that AXL plays a pivotal role in drug resistance. Although several molecules with AXL inhibitory activity have been developed, none have sufficient activity and selectivity to be clinically effective when administered in combination with a cancer therapy. Here, we report a novel small molecule, ER-851, which is a potent and highly selective AXL inhibitor. To investigate resistance mechanisms and identify driving molecules, we conducted a comprehensive gene expression analysis of chemoresistant tumor cells in mouse xenograft models of genetically engineered human lung cancer and human triple-negative breast cancer. Consistent with the effect of AXL knockdown, cotreatment of ER-851 and antimitotic drugs produced an antitumor effect and prolonged relapse-free survival in the mouse xenograft model of human triple-negative breast cancer. Importantly, when orally administered to BALB/c mice, this compound did not induce retinal toxicity, a known side effect of chronic MER inhibition. Together, these data strongly suggest that AXL is a therapeutic target for overcoming drug resistance and that ER-851 is a promising candidate therapeutic agent for use against AXL-expressing antimitotic-resistant tumors.


Asunto(s)
Antimitóticos , Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Tirosina Quinasa del Receptor Axl , Antimitóticos/farmacología , Proteínas Proto-Oncogénicas/metabolismo , Resistencia a Antineoplásicos , Línea Celular Tumoral , Inhibidores de Proteínas Quinasas/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Bioorg Med Chem Lett ; 48: 128247, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34271070

RESUMEN

Axl and Mer are members of the TAM (Tyro3-Axl-Mer) family of receptor tyrosine kinases. Previously, we reported that enzyme-mediated inhibition of Mer by an Axl/Mer dual inhibitor led to retinal toxicity in mice, whereas selective Axl inhibition by compound 1 did not. On the other hand, compound 1 showed low membrane permeability. Here, we designed and synthesized a novel series of 5,6,7,8-tetrahydropyrido[3,4-d]pyrimidine derivatives and evaluated their Axl and Mer inhibitory activities, leading to identification of ER-001259851-000 as a potent and selective Axl inhibitor with drug-likeness and a promising pharmacokinetic profile in mice.


Asunto(s)
Descubrimiento de Drogas , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Piridinas/farmacología , Pirimidinas/farmacología , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Tirosina Quinasa c-Mer/antagonistas & inhibidores , Animales , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Microsomas Hepáticos/química , Microsomas Hepáticos/metabolismo , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Proteínas Proto-Oncogénicas/metabolismo , Piridinas/síntesis química , Piridinas/química , Pirimidinas/síntesis química , Pirimidinas/química , Proteínas Tirosina Quinasas Receptoras/metabolismo , Relación Estructura-Actividad , Tirosina Quinasa c-Mer/metabolismo , Tirosina Quinasa del Receptor Axl
3.
Bioorg Med Chem ; 39: 116137, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33930844

RESUMEN

Axl and Mer are a members of the TAM (Tyro3-Axl-Mer) family of receptor tyrosine kinases, which, when activated, can promote tumor cell survival, proliferation, migration, invasion, angiogenesis, and tumor-host interactions. Chronic inhibition of Mer leads to retinal toxicity in mice. Therefore, successful development of an Axl targeting agent requires ensuring that it is safe for prolonged treatment. Here, to clarify whether enzyme inhibition of Mer by a small molecule leads to retinal toxicity in mice, we designed and synthesized Axl/Mer inhibitors and Axl-selective inhibitors. We identified an Axl/Mer dual inhibitor 28a, which showed retinal toxicity at a dose of 100 mg/kg in mice. Subsequent derivatization of a pyridine derivative led to the discovery of a pyrimidine derivative, 33g, which selectively inhibited the activity of Axl over Mer without retinal toxicity at a dose of 100 mg/kg in mice. Additionally, the compound displayed in vivo anti-tumor effects without influencing body weight in a Ba/F3-Axl isogenic subcutaneous model.


Asunto(s)
Descubrimiento de Drogas , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Animales , Ratones , Modelos Animales , Inhibidores de Proteínas Quinasas/química , Retina/efectos de los fármacos , Análisis Espectral/métodos , Relación Estructura-Actividad , Tirosina Quinasa del Receptor Axl
4.
Biochim Biophys Acta ; 1774(8): 1029-35, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17561456

RESUMEN

We have previously produced two bioactive lysine-deficient mutants of TNF-alpha (mutTNF-K90R,-K90P) and found that these mutants have bioactivity superior to wild-type TNF (wtTNF). Because these mutants contained same amino acid except for amino acid 90, it is unclear which amino acid residue is optimal for showing bioactivity. We speculated that this amino acid position was exchangeable, and this amino acid substitution enabled the creation of lysine-deficient mutants with enhanced bioactivity. Therefore, we produced mutTNF-K90R variants (mutTNF-R90X), in which R90 was replaced with other amino acids, to assay their bioactivities and investigated the importance of amino acid position 90. As a result, mutTNF-R90X that replaced R90 with lysine, arginine and proline were bioactive, while other mutants were not bioactive. Moreover, these three mutants showed bioactivity as good as or better than wtTNF. R90 replaced with lysine or arginine had especially superior binding affinities. These results suggest that the amino acid position 90 in TNF-alpha is important for TNF-alpha bioactivity and could be altered to improve its bioactivity to generate a "super-agonist".


Asunto(s)
Sustitución de Aminoácidos , Mutación Missense , Receptores Tipo II del Factor de Necrosis Tumoral/agonistas , Receptores Tipo I de Factores de Necrosis Tumoral/agonistas , Factor de Necrosis Tumoral alfa/inmunología , Humanos , Unión Proteica/genética , Unión Proteica/inmunología , Receptores Tipo I de Factores de Necrosis Tumoral/inmunología , Receptores Tipo II del Factor de Necrosis Tumoral/inmunología , Factor de Necrosis Tumoral alfa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA