Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Clin Interv Aging ; 19: 1259-1272, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39011312

RESUMEN

Postmenopausal osteoporosis (PMOP) is a major health problem affecting millions of women worldwide. PMOP patients are often accompanied by abnormal accumulation of bone marrow adipose tissue (BMAT). BMAT is a critical regulator of bone homeostasis, and an increasing BMAT volume is negatively associated with bone mass reduction or fracture. BMAT regulates bone metabolism via adipokines, cytokines and the immune system, but the specific mechanisms are largely unknown. This review emphasizes the impact of estrogen deficiency on bone homeostasis and BMAT expansion, and the mechanism by which BMAT regulates PMOP, providing a promising strategy for targeting BMAT in preventing and treating PMOP.


Asunto(s)
Tejido Adiposo , Médula Ósea , Osteoporosis Posmenopáusica , Humanos , Tejido Adiposo/metabolismo , Femenino , Densidad Ósea , Adipoquinas/metabolismo , Estrógenos/metabolismo , Huesos/metabolismo , Animales , Citocinas/metabolismo , Homeostasis
2.
J Agric Food Chem ; 72(23): 13083-13098, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38829529

RESUMEN

Type 2 diabetes (T2DM) significantly diminishes people's quality of life and imposes a substantial economic burden. This pathological progression is intimately linked with specific gut microbiota, such as Akkermansia muciniphila. Pasteurized A. muciniphila (P-AKK) has been defined as a novel food by the European Food Safety Authority and exhibited significant hypoglycemic activity. However, current research on the hypoglycemic activity of P-AKK is limited to the metabolic level, neglecting systematic exploration at the pathological level. Consequently, its material basis and mechanism of action for hypoglycemia remain unclear. Drawing upon this foundation, we utilized high-temperature killed A. muciniphila (H-K-AKK) with insignificant hypoglycemic activity as the control research object. Assessments were conducted at pathological levels to evaluate the hypoglycemic functions of both P-AKK and H-K-AKK separately. Our study unveiled for the first time that P-AKK ameliorated symptoms of T2DM by enhancing the generation of glucagon-Like Peptide 1 (GLP-1), with pasteurized A. muciniphila total proteins (PP) being a pivotal component responsible for this activity. Utilizing SDS-PAGE, proteomics, and molecular docking techniques, we deeply analyzed the material foundation of PP. We scientifically screened and identified a protein weighing 77.85 kDa, designated as P5. P5 enhanced GLP-1 synthesis and secretion by activating the G protein-coupled receptor (GPCR) signaling pathway, with free fatty acid receptor 2 (FFAR-2) being identified as the pivotal target protein for P5's physiological activity. These findings further promote the widespread application of P-AKK in the food industry, laying a solid theoretical foundation for its utilization as a beneficial food ingredient or functional component.


Asunto(s)
Akkermansia , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Pasteurización , Probióticos , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Masculino , Animales , Péptido 1 Similar al Glucagón/metabolismo , Ratones , Glucemia/metabolismo , Hipoglucemiantes/química , Simulación del Acoplamiento Molecular
3.
Front Immunol ; 15: 1370658, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38571945

RESUMEN

Metabolic diseases are comprehensive disease based on obesity. Numerous cumulative studies have shown a certain correlation between the fluctuating abundance of Akkermansia muciniphila and the occurrence of metabolic diseases. A. muciniphila, a potential probiotic candidate colonized in the human intestinal mucus layer, and its derivatives have various physiological functions, including treating metabolic disorders and maintaining human health. This review systematically explicates the abundance change rules of A. muciniphila in metabolic diseases. It also details the high efficacy and specific molecules mechanism of A. muciniphila and its derivatives in treating obesity, type 2 diabetes mellitus, cardiovascular disease, and non-alcoholic fatty liver disease.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Verrucomicrobia/metabolismo , Intestinos , Obesidad , Akkermansia
4.
Phytother Res ; 38(6): 3218-3239, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38682953

RESUMEN

Colorectal cancer (CRC) is a significant health problem with elevated mortality rates, prompting intense exploration of its complex molecular mechanisms and innovative therapeutic avenues. Resveratrol (RSV), recognised for its anticancer effects through SIRT1 activation, is a promising candidate for CRC treatment. This study focuses on elucidating RSV's role in CRC progression, particularly its effect on autophagy-related apoptosis. Using bioinformatics, protein imprinting and immunohistochemistry, we established a direct correlation between FOXQ1 and adverse CRC prognosis. Comprehensive in vitro experiments confirmed RSV's ability to promote autophagy-related apoptosis in CRC cells. Plasmids for SIRT1 modulation were used to investigate underlying mechanisms. Molecular docking, glutathione-S-transferase pull-down experiments and immunoprecipitation highlighted RSV's direct activation of SIRT1, resulting in the inhibition of FOXQ1 expression. Downstream interventions identified ATG16L as a crucial autophagic target. In vivo and in vitro studies validated RSV's potential for CRC therapy through the SIRT1/FOXQ1/ATG16L pathway. This study establishes RSV's capacity to enhance autophagy-related cell apoptosis in CRC, positioning RSV as a prospective therapeutic agent for CRC within the SIRT1/FOXQ1/ATG16L pathway.


Asunto(s)
Apoptosis , Autofagia , Neoplasias Colorrectales , Factores de Transcripción Forkhead , Resveratrol , Sirtuina 1 , Humanos , Resveratrol/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Sirtuina 1/metabolismo , Factores de Transcripción Forkhead/metabolismo , Animales , Línea Celular Tumoral , Ratones , Ratones Desnudos , Masculino , Simulación del Acoplamiento Molecular , Femenino , Progresión de la Enfermedad , Ratones Endogámicos BALB C
5.
J Ethnopharmacol ; 326: 117955, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38395181

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Gui Shen Wan (GSW) stands out as a promising therapeutic approach for addressing Premature Ovarian Insufficiency (POI). With deep roots in traditional medicine, GSW highlights the ethnopharmacological significance of herbal interventions in addressing nuanced aspects of women's health, with a specific emphasis on ovarian functionality. Recognizing the importance of GSW in gynecological contexts resonates with a rich tradition of using botanical formulations to navigate the intricacies of reproductive health. Delving into GSW's potential for treating POI emphasizes the crucial role of ethnopharmacological insights in guiding modern research endeavors. AIM OF THE STUDY: GSW is extensively utilized in gynecological disorders and has recently emerged as a potential therapeutic approach for POI. The present investigation aimed to assess the efficacy of GSW in treating POI in rats and elucidate its underlying molecular mechanisms. MATERIALS AND METHODS: The study employed GSW for POI treatment in rats. GSW, prepared as pills, underwent HPLC fingerprinting for quality control. Reagents and drugs, including VCD and dehydroepiandrosterone (DHEA), were sourced from reputable providers. Eighty Sprague-Dawley rats were categorized into groups for POI induction and treatment. Ovarian tissue underwent HE staining, immunohistochemical staining, Western Blot, qRT-PCR, and vaginal secretion testing. ELISA was utilized for target molecule detection. This methodology ensures a robust and reliable experimental framework. RESULTS: The results highlight a robust collaborative improvement in POI among rats subjected to combined GSW and DHEA treatment. Particularly noteworthy is the substantial enhancement in the expression of vascular regeneration-related molecules-VDR-Klotho-VEGFR-accompanied by a significant elevation in autophagy levels. Post-GSW administration, rat ovarian morphology demonstrated increased stability, hormone levels exhibited more consistent maintenance, and there was a marked reduction in inflammatory response compared to other groups (p < 0.01). Furthermore, GSW intervention resulted in a more pronounced upregulation of ovarian autophagy (p < 0.05). CONCLUSION: By modulating VDR-Klotho signaling, GSW exerts regulatory control over ovarian autophagy and vascular regeneration, thereby mitigating the occurrence and progression of POI in rats.


Asunto(s)
Menopausia Prematura , Insuficiencia Ovárica Primaria , Humanos , Ratas , Femenino , Animales , Angiogénesis , Ratas Sprague-Dawley , Insuficiencia Ovárica Primaria/tratamiento farmacológico , Insuficiencia Ovárica Primaria/metabolismo , Deshidroepiandrosterona/uso terapéutico , Receptores de Calcitriol
6.
BMC Cancer ; 24(1): 140, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287266

RESUMEN

Glioblastoma multiforme (GBM) is the most aggressive brain cancer with a poor prognosis. Therefore, the correlative molecular markers and molecular mechanisms should be explored to assess the occurrence and treatment of glioma.WB and qPCR assays were used to detect the expression of CXCL5 in human GBM tissues. The relationship between CXCL5 expression and clinicopathological features was evaluated using logistic regression analysis, Wilcoxon symbolic rank test, and Kruskal-Wallis test. Univariate, multivariate Cox regression and Kaplan-Meier methods were used to assess CXCL5 and other prognostic factors of GBM. Gene set enrichment analysis (GSEA) was used to identify pathways associated with CXCL5. The correlation between CXCL5 and tumor immunoinfiltration was investigated using single sample gene set enrichment analysis (ssGSEA) of TCGA data. Cell experiments and mouse subcutaneous transplanted tumor models were used to evaluate the role of CXCL5 in GBM. WB, qPCR, immunofluorescence, and immunohistochemical assays showed that CXCL5 expression was increased in human GBM tissues. Furthermore, high CXCL5 expression was closely related to poor disease-specific survival and overall survival of GBM patients. The ssGSEA suggested that CXCL5 is closely related to the cell cycle and immune response through PPAR signaling pathway. GSEA also showed that CXCL5 expression was positively correlated with macrophage cell infiltration level and negatively correlated with cytotoxic cell infiltration level. CXCL5 may be associated with the prognosis and immunoinfiltration of GBM.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Animales , Ratones , Humanos , Glioblastoma/patología , Pronóstico , Procesos Neoplásicos , Neoplasias Encefálicas/metabolismo , Transducción de Señal , Quimiocina CXCL5/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA