Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39033955

RESUMEN

BACKGROUND: Brain aging is a complex process that involves functional alterations in multiple subnetworks and brain regions. However, most previous studies investigating aging-related functional connectivity (FC) changes using resting-state functional magnetic resonance images (rs-fMRIs) have primarily focused on the linear correlation between brain subnetworks, ignoring the nonlinear casual properties of fMRI signals. METHODS: We introduced the neural Granger causality technique to investigate the sex-dependent nonlinear Granger connectivity (NGC) during aging on a publicly available dataset of 227 healthy participants acquired cross-sectionally in Leipzig, Germany. RESULTS: Our findings indicate that brain aging may cause widespread declines in NGC at both regional and subnetwork scales. These findings exhibit high reproducibility across different network sparsities, demonstrating the efficacy of static and dynamic analysis strategies. Females exhibit greater heterogeneity and reduced stability in NGC compared to males during aging, especially the NGC between the visual network and other subnetworks. Besides, NGC strengths can well reflect the individual cognitive function, which may therefore work as a sensitive metric in cognition-related experiments for individual-scale or group-scale mechanism understanding. CONCLUSION: These findings indicate that NGC analysis is a potent tool for identifying sex-dependent brain aging patterns. Our results offer valuable perspectives that could substantially enhance the understanding of sex differences in neurological diseases in the future, especially in degenerative disorders.

3.
Mol Psychiatry ; 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879719

RESUMEN

Substance use disorders (SUD) and drug addiction are major threats to public health, impacting not only the millions of individuals struggling with SUD, but also surrounding families and communities. One of the seminal challenges in treating and studying addiction in human populations is the high prevalence of co-morbid conditions, including an increased risk of contracting a human immunodeficiency virus (HIV) infection. Of the ~15 million people who inject drugs globally, 17% are persons with HIV. Conversely, HIV is a risk factor for SUD because chronic pain syndromes, often encountered in persons with HIV, can lead to an increased use of opioid pain medications that in turn can increase the risk for opioid addiction. We hypothesize that SUD and HIV exert shared effects on brain cell types, including adaptations related to neuroplasticity, neurodegeneration, and neuroinflammation. Basic research is needed to refine our understanding of these affected cell types and adaptations. Studying the effects of SUD in the context of HIV at the single-cell level represents a compelling strategy to understand the reciprocal interactions among both conditions, made feasible by the availability of large, extensively-phenotyped human brain tissue collections that have been amassed by the Neuro-HIV research community. In addition, sophisticated animal models that have been developed for both conditions provide a means to precisely evaluate specific exposures and stages of disease. We propose that single-cell genomics is a uniquely powerful technology to characterize the effects of SUD and HIV in the brain, integrating data from human cohorts and animal models. We have formed the Single-Cell Opioid Responses in the Context of HIV (SCORCH) consortium to carry out this strategy.

4.
Int J Biol Macromol ; 272(Pt 2): 132905, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38862317

RESUMEN

Wheat bran is an abundant yet underutilized agricultural byproduct. Herein, the insoluble dietary fiber from wheat bran (WBIDF) was ultra-milled to investigate its impact on physicochemical properties and gastrointestinal emptying. SEM and CLSM showed that the laminar structure of WBIDF was disrupted as the particle size was significantly reduced. In the similar characteristic peaks appearing at 3410, 2925, 1635, 1041, and 895 cm-1 in the FT-IR spectra and at 2940, 1593, 1080, and 526 cm-1 in the Raman spectra, the peak intensity was increased as the particle size decreased. It may be that the hydrogen bonding between cellulose, hemicellulose, or other macromolecules was enhanced. X-ray diffraction showed cellulose type I results for all five samples. Correspondingly, the water-holding, swelling, and oil-holding capacities increased by 75.33 %, 52.62 %, and 75.00 %, respectively, in WBIDF-CW1.8 compared with WBIDF-CWy. Additionally, smaller particle sizes had lower viscosity, thereby enhancing intestinal propulsion and gastric emptying rates. Enhanced contact of the cecal tissue growth factor with the intestinal mucosa delayed ghrelin secretion and stimulated the secretion of motilin, gastrin, and cholecystokinin. In conclusion, the particle sizes of WBIDF were reduced through ultramicro-grinding, leading to altered structure, enhanced hydration and oil-holding capacities, decreased viscosity, and improved gastrointestinal emptying capacity.


Asunto(s)
Fibras de la Dieta , Vaciamiento Gástrico , Tamaño de la Partícula , Fibras de la Dieta/análisis , Animales , Ratones , Cinética , Solubilidad , Masculino , Viscosidad
5.
NPJ Sci Food ; 8(1): 41, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937488

RESUMEN

Diabetes mellitus affected more than 500 million of people globally, with an annual mortality of 1.5 million directly attributable to diabetic complications. Oxidative stress, in particularly in post-prandial state, plays a vital role in the pathogenesis of the diabetic complications. However, oxidative status marker is generally poorly characterized and their mechanisms of action are not well understood. In this work, we proposed a new framework for deep characterization of oxidative stress in erythrocytes (and in urine) using home-built micro-scale NMR system. The dynamic of post-prandial oxidative status (against a wide variety of nutritional load) in individual was assessed based on the proposed oxidative status of the red blood cells, with respect to the traditional risk-factors such as urinary isoprostane, reveals new insights into our understanding of diabetes. This new method can be potentially important in drafting guidelines for sub-stratification of diabetes mellitus for clinical care and management.

6.
bioRxiv ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38915663

RESUMEN

The catecholamine neurotransmitter dopamine is classically known for regulation of central nervous system (CNS) functions such as reward, movement, and cognition. Increasing evidence also indicates that dopamine regulates critical functions in peripheral organs and is an important immunoregulatory factor. We have previously shown that dopamine increases NF-κB activity, inflammasome activation, and the production of inflammatory cytokines such as IL-1ß in human macrophages. As myeloid lineage cells are central to the initiation and resolution of acute inflammatory responses, dopamine-mediated dysregulation of these functions could both impair the innate immune response and exacerbate chronic inflammation. However, the exact pathways by which dopamine drives myeloid inflammation are not well defined, and studies in both rodent and human systems indicate that dopamine can impact the production of inflammatory mediators through both D1-like dopamine receptors (DRD1, DRD5) and D2-like dopamine receptors (DRD2, DRD3, and DRD4). Therefore, we hypothesized that dopamine-mediated production of IL-1ß in myeloid cells is regulated by the ratio of different dopamine receptors that are activated. Our data in primary human monocyte-derived macrophages (hMDM) indicate that DRD1 expression is necessary for dopamine-mediated increases in IL-1ß, and that changes in the expression of DRD2 and other dopamine receptors can alter the magnitude of the dopamine-mediated increase in IL-1ß. Mature hMDM have a high D1-like to D2-like receptor ratio, which is different relative to monocytes and peripheral blood mononuclear cells (PBMCs). We further confirm in human microglia cell lines that a high ratio of D1-like to D2-like receptors promotes dopamine-induced increases in IL-1ß gene and protein expression using pharmacological inhibition or overexpression of dopamine receptors. RNA-sequencing of dopamine-treated microglia shows that genes encoding functions in IL-1ß signaling pathways, microglia activation, and neurotransmission increased with dopamine treatment. Finally, using HIV as an example of a chronic inflammatory disease that is substantively worsened by comorbid substance use disorders (SUDs) that impact dopaminergic signaling, we show increased effects of dopamine on inflammasome activation and IL-1ß in the presence of HIV in both human macrophages and microglia. These data suggest that use of addictive substances and dopamine-modulating therapeutics could dysregulate the innate inflammatory response and exacerbate chronic neuroimmunological conditions like HIV. Thus, a detailed understanding of dopamine-mediated changes in inflammation, in particular pathways regulating IL-1ß, will be critical to effectively tailor medication regimens.

7.
Biomolecules ; 14(5)2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38785979

RESUMEN

The balance between ubiquitination and deubiquitination is instrumental in the regulation of protein stability and maintenance of cellular homeostasis. The deubiquitinating enzyme, ubiquitin-specific protease 36 (USP36), a member of the USP family, plays a crucial role in this dynamic equilibrium by hydrolyzing and removing ubiquitin chains from target proteins and facilitating their proteasome-dependent degradation. The multifaceted functions of USP36 have been implicated in various disease processes, including cancer, infections, and inflammation, via the modulation of numerous cellular events, including gene transcription regulation, cell cycle regulation, immune responses, signal transduction, tumor growth, and inflammatory processes. The objective of this review is to provide a comprehensive summary of the current state of research on the roles of USP36 in different pathological conditions. By synthesizing the findings from previous studies, we have aimed to increase our understanding of the mechanisms underlying these diseases and identify potential therapeutic targets for their treatment.


Asunto(s)
Neoplasias , Ubiquitina Tiolesterasa , Humanos , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/enzimología , Neoplasias/patología , Ubiquitina Tiolesterasa/metabolismo , Ubiquitina Tiolesterasa/genética , Animales , Ubiquitinación , Inflamación/metabolismo , Transducción de Señal , Ubiquitina/metabolismo
8.
Arch Esp Urol ; 77(3): 242-248, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38715164

RESUMEN

OBJECTIVE: To retrospectively analyse the effects of cinobufotalin capsule combined with zoledronic acid on pain symptoms and clinical efficacy of prostate cancer patients with bone metastases. METHODS: Patients with prostate cancer with bone metastasis admitted to our hospital from January 2021 to December 2022 were selected as study subjects. They were divided into the control group (treated with zoledronic acid) and the combined group (cinobufotalin capsules were added on the control group basis) according to different recorded treatment methods. The efficacies of the two groups after matching, lumbar L1-4 bone mineral density (BMD), serum calcium, serum phosphorus, visual analogue scale (VAS) score and Karnofsky performance status (KPS) score before and after treatment were compared, and adverse reactions were statistically analysed. RESULTS: A total of 102 patients were included in the study, encompassing 52 patients in the combined group and 50 patients in the control group. After 1:1 preference score matching, 64 patients were included in the two groups. No significant difference in baseline data was found between the two groups (p > 0.05). The total effective rate of the combination group was higher than that of the control group (p < 0.05). No significant differences in L1-4 bone mineral density, serum calcium and phosphorus, VAS score and KPS score were observed between the two groups prior to treatment (p > 0.05). After treatment, the L1-4 bone mineral density (BMD) and KPS score of the combined group decreased to less than those of the control group, the VAS score was lower than that of the control group, and the serum calcium and phosphorus level increased but less than that of the control group (p < 0.05). No significant difference in adverse reactions was found between the two groups (p > 0.05). CONCLUSIONS: Cinobufotalin capsule combined with zoledronic acid had ideal efficacy in the treatment of prostate cancer in patients with bone metastasis. This approach could improve their bone density and quality of life, improve their calcium and phosphorus metabolism, reduce their pain symptoms and provide increased safety. It may have an important guiding role in formulating future clinical treatment plans for patients with prostate cancer and bone metastasis.


Asunto(s)
Conservadores de la Densidad Ósea , Neoplasias Óseas , Bufanólidos , Neoplasias de la Próstata , Ácido Zoledrónico , Humanos , Masculino , Ácido Zoledrónico/uso terapéutico , Ácido Zoledrónico/administración & dosificación , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/complicaciones , Estudios Retrospectivos , Anciano , Conservadores de la Densidad Ósea/uso terapéutico , Conservadores de la Densidad Ósea/administración & dosificación , Neoplasias Óseas/secundario , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/complicaciones , Bufanólidos/uso terapéutico , Bufanólidos/administración & dosificación , Persona de Mediana Edad , Resultado del Tratamiento , Cápsulas , Quimioterapia Combinada , Dolor en Cáncer/tratamiento farmacológico
9.
bioRxiv ; 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38617282

RESUMEN

Human Immunodeficiency Virus (HIV) is widely acknowledged for its profound impact on the immune system. Although HIV primarily affects peripheral CD4 T cells, its influence on the central nervous system (CNS) cannot be overlooked. Within the brain, microglia and CNS-associated macrophages (CAMs) serve as the primary targets for HIV, as well as for the simian immunodeficiency virus (SIV) in nonhuman primates. This infection can lead to neurological effects and the establishment of a viral reservoir. Given the gaps in our understanding of how these cells respond in vivo to acute CNS infection, we conducted single-cell RNA sequencing (scRNA-seq) on myeloid cells from the brains of three rhesus macaques 12-days after SIV infection, along with three uninfected controls. Our analysis revealed six distinct microglial clusters including homeostatic microglia, preactivated microglia, and activated microglia expressing high levels of inflammatory and disease-related molecules. In response to acute SIV infection, the population of homeostatic and preactivated microglia decreased, while the activated and disease-related microglia increased. All microglial clusters exhibited upregulation of MHC class I molecules and interferon-related genes, indicating their crucial roles in defending against SIV during the acute phase. All microglia clusters also upregulated genes linked to cellular senescence. Additionally, we identified two distinct CAM populations: CD14lowCD16hi and CD14hiCD16low CAMs. Interestingly, during acute SIV infection, the dominant CAM population changed to one with an inflammatory phenotype. Notably, specific upregulated genes within one microglia and one macrophage cluster were associated with neurodegenerative pathways, suggesting potential links to neurocognitive disorders. This research sheds light on the intricate interactions between viral infection, innate immune responses, and the CNS, providing valuable insights for future investigations.

10.
Carbohydr Polym ; 335: 122072, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38616094

RESUMEN

The sol performance of wheat starch (WS) matrix incorporating acetylated starch (AS) is crucial for the processing and quality features of wheat products. From a supramolecular structure view, how regulating salt (sodium chloride) concentration modulates the sol features, e.g., pasting, zero-shear viscosity (ZSV) and thixotropy of WS-AS binary matrix was explored. Compared to the salt-free counterpart, the saline matrices exhibited a delayed pasting profile and a decreased viscoelasticity. Thereinto, the sol at 0.02 M NaCl exhibited the smallest ZSV (23,710 Pa·s) and the greatest in-shear recovery ratio (33.7 %). Such variations could be attributed to the weakened coil-helix, nematic-smectic and isotropy-anisotropy transitions from a side-chain liquid-crystalline perspective. Meanwhile, the correlation length (ξ) and radius of gyration (Rg) obtained from small angle X-ray scattering analysis were increased by 5.2 and 9.6 Å respectively, which disclosed a restrained entanglement and an enhanced chain mobility. These results would provide a reference for the design of fluid/semisolid products with optimized qualities.

11.
Adv Healthc Mater ; : e2400908, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598819

RESUMEN

The implementation of chemoradiation combinations has gained great momentum in clinical practices. However, the full utility of this paradigm is often restricted by the discordant tempos of action of chemotherapy and radiotherapy. Here, a gold nanoparticle-based radiation-responsive nanovesicle system loaded with cisplatin and veliparib, denoted as CV-Au NVs, is developed to augment the concurrent chemoradiation effect in a spatiotemporally controllable manner of drug release. Upon irradiation, the in situ generation of •OH induces the oxidation of polyphenylene sulfide from being hydrophobic to hydrophilic, resulting in the disintegration of the nanovesicles and the rapid release of the entrapped cisplatin and veliparib (the poly ADP-ribose polymerase (PARP) inhibitor). Cisplatin-induced DNA damage and the impairment of the DNA repair mechanism mediated by veliparib synergistically elicit potent pro-apoptotic effects. In vivo studies suggest that one-dose injection of the CV-Au NVs and one-time X-ray irradiation paradigm effectively inhibit tumor growth in the A549 lung cancer model. This study provides new insight into designing nanomedicine platforms in chemoradiation therapy from a vantage point of synergizing both chemotherapy and radiation therapy in a spatiotemporally concurrent manner.

12.
New Phytol ; 242(5): 2043-2058, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38515251

RESUMEN

MicroRNAs are essential in plant development and stress resistance, but their specific roles in drought stress require further investigation. Here, we have uncovered that a Populus-specific microRNAs (miRNA), miR6445, targeting NAC (NAM, ATAF, and CUC) family genes, is involved in regulating drought tolerance of poplar. The expression level of miR6445 was significantly upregulated under drought stress; concomitantly, seven targeted NAC genes showed significant downregulation. Silencing the expression of miR6445 by short tandem target mimic technology significantly decreased the drought tolerance in poplar. Furthermore, 5' RACE experiments confirmed that miR6445 directly targeted NAC029. The overexpression lines of PtrNAC029 (OE-NAC029) showed increased sensitivity to drought compared with knockout lines (Crispr-NAC029), consistent with the drought-sensitive phenotype observed in miR6445-silenced strains. PtrNAC029 was further verified to directly bind to the promoters of glutathione S-transferase U23 (GSTU23) and inhibit its expression. Both Crispr-NAC029 and PtrGSTU23 overexpressing plants showed higher levels of PtrGSTU23 transcript and GST activity while accumulating less reactive oxygen species (ROS). Moreover, poplars overexpressing GSTU23 demonstrated enhanced drought tolerance. Taken together, our research reveals the crucial role of the miR6445-NAC029-GSTU23 module in enhancing poplar drought tolerance by regulating ROS homeostasis. This finding provides new molecular targets for improving the drought resistance of trees.


Asunto(s)
Adaptación Fisiológica , Sequías , Regulación de la Expresión Génica de las Plantas , Glutatión Transferasa , MicroARNs , Proteínas de Plantas , Populus , Especies Reactivas de Oxígeno , Populus/genética , Populus/fisiología , Populus/enzimología , MicroARNs/genética , MicroARNs/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Adaptación Fisiológica/genética , Plantas Modificadas Genéticamente , Estrés Fisiológico/genética , Depuradores de Radicales Libres/metabolismo , Secuencia de Bases , Genes de Plantas , Regiones Promotoras Genéticas/genética , Resistencia a la Sequía
13.
J Sci Food Agric ; 104(7): 4371-4382, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38459765

RESUMEN

BACKGROUND: Whole-grain rice noodles are a kind of healthy food with rich nutritional value, and their product quality has a notable impact on consumer acceptability. The quality evaluation model is of great significance to the optimization of product quality. However, there are few methods that can establish a product quality prediction model with multiple preparation conditions as inputs and various quality evaluation indexes as outputs. In this study, an artificial neural network (ANN) model based on a backpropagation (BP) algorithm was used to predict the comprehensive quality changes of whole-grain rice noodles under different preparation conditions, which provided a new way to improve the quality of extrusion rice products. RESULTS: The results showed that the BP-ANN using the Levenberg-Marquardt algorithm and the optimal topology (4-11-8) gave the best performance. The correlation coefficients (R2) for the training, validation, testing, and global data sets of the BP neural network were 0.927, 0.873, 0.817, and 0.903, respectively. In the validation test, the percentage error in the quality prediction of whole-grain rice noodles was within 10%, indicating that the BP-ANN could accurately predict the quality of whole-grain rice noodles prepared under different conditions. CONCLUSION: This study showed that the quality prediction model of whole-grain rice noodles based on the BP-ANN algorithm was effective, and suitable for predicting the quality of whole-grain rice noodles prepared under different conditions. © 2024 Society of Chemical Industry.


Asunto(s)
Oryza , Redes Neurales de la Computación , Algoritmos , Granos Enteros , Valor Nutritivo
14.
Int J Biol Macromol ; 264(Pt 1): 130561, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38431011

RESUMEN

Beta-glucans possess the ability of retarding starch retrogradation. However, ß-glucans from different sources might show various influences on retrogradation process and the structure-function relationships of ß-glucans related to the feature still remains unclear. In the study, the ß-glucans from oat (OG), highland barley (HBG), and yeast (YG) were selected. Each ß-glucans formed aggregate as observed by atomic force microscopy. OG and HBG with a lower Mw aggregated more obviously and exhibited higher intrinsic and apparent viscosity. The two ß-glucans showed more restraining effect on the short-term starch retrogradation in the sol-like test system (RVA) and the long-term starch retrogradation in the gel-like test system (DSC). However, YG with a higher Mw exerted a greater retarding effect on the short-term starch retrogradation in gel-like test systems (Mixolab and rheology). LF-NMR indicated that OG and HBG increased the population of less-bound water by wrapping around the starch. In summary, the structural characteristics of ß-glucan (Mw and aggregation state) and experiment condition (solid content) jointly influenced starch retrogradation, because a lower Mw and higher aggregation capacity ß-glucan interacted more readily with starch and inhibited more starch re-association due to the higher diffusion rate in the sol-like system.


Asunto(s)
Almidón , beta-Glucanos , Almidón/química , beta-Glucanos/química , Harina , Triticum/química , Viscosidad
15.
Bioact Mater ; 36: 376-412, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38544737

RESUMEN

The treatment of digestive system tumors presents challenges, particularly in immunotherapy, owing to the advanced immune tolerance of the digestive system. Nanomaterials have emerged as a promising approach for addressing these challenges. They provide targeted drug delivery, enhanced permeability, high bioavailability, and low toxicity. Additionally, nanomaterials target immunosuppressive cells and reshape the tumor immune microenvironment (TIME). Among the various cells in the TIME, tumor-associated macrophages (TAMs) are the most abundant and play a crucial role in tumor progression. Therefore, investigating the modulation of TAMs by nanomaterials for the treatment of digestive system tumors is of great significance. Here, we present a comprehensive review of the utilization of nanomaterials to modulate TAMs for the treatment of gastric cancer, colorectal cancer, hepatocellular carcinoma, and pancreatic cancer. We also investigated the underlying mechanisms by which nanomaterials modulate TAMs to treat tumors in the digestive system. Furthermore, this review summarizes the role of macrophage-derived nanomaterials in the treatment of digestive system tumors. Overall, this research offers valuable insights into the development of nanomaterials tailored for the treatment of digestive system tumors.

16.
BMC Gastroenterol ; 24(1): 116, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38504190

RESUMEN

BACKGROUND: The diagnosis of primary small intestinal lymphoma (PSIL) is difficult. This study aimed to evaluate the clinical, radiological and endoscopic characteristics of PSIL and provide clue for diagnosis. METHODS: A total of 30 patients diagnosed with PSIL who underwent double balloon endoscopy (DBE) in the First Affiliated Hospital of Zhejiang University were retrospectively analyzed. Clinical, radiological and endoscopic data were collected. Univariate analysis was used to determine significant indicators for differentiating three main subtypes of PSIL. Cox regression analysis was performed to assess the risk factors for survival. RESULTS: In this study, 10 patients were pathologically diagnosed as diffuse large B-cell lymphoma (DLBCL), 11 were indolent B-cell lymphoma (BCL) and 9 were T-cell lymphoma (TCL). Compared with DLBCL patients, the body mass index (BMI) of TCL patients was significantly lower (p = 0.004). Meanwhile, compared with patients with DLBCL, the patients with indolent BCL had lower levels of C-reactive protein, lactate dehydrogenase (LDH), fibrinogen and D-Dimer (p = 0.004, p = 0.004, p = 0.006, and p = 0.002, respectively), and lower proportion of thicker intestinal wall and aneurysmal dilation in CT scan (p = 0.003 and p = 0.020, respectively). In terms of ulcer morphology, patients with DLBCL had significantly higher proportion of deep ulcers than patients with indolent BCL (p = 0.020, respectively). Cox regression analysis showed that drink (p = 0.034), concomitant colonic ulcers (p = 0.034) and elevated LDH (p = 0.043) are risk factors for mortality in patients with PSIL. CONCLUSIONS: This study provides clinical characteristics of patients with PSIL. Thicker intestinal wall and aneurismal dilation detected on CT scan and deeper ulcer on DBE examination helps to establish a diagnosis of DLBCL.


Asunto(s)
Linfoma de Células B Grandes Difuso , Úlcera , Humanos , Estudios Retrospectivos , Endoscopía Gastrointestinal , Linfoma de Células B Grandes Difuso/diagnóstico por imagen , Linfoma de Células B Grandes Difuso/patología , Intestinos/patología , Pronóstico
17.
Food Chem ; 447: 139017, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38531304

RESUMEN

Long-term consumption of mixed fraudulent edible oils increases the risk of developing of chronic diseases which has been a threat to the public health globally. The complicated global supply-chain is making the industry malpractices had often gone undetected. In order to restore the confidence of consumers, traceability (and accountability) of every level in the supply chain is vital. In this work, we shown that machine learning (ML) assisted windowed spectroscopy (e.g., visible-band, infra-red band) produces high-throughput, non-destructive, and label-free authentication of edible oils (e.g., olive oils, sunflower oils), offers the feasibility for rapid analysis of large-scale industrial screening. We report achieving high-level of discriminant (AUC > 0.96) in the large-scale (n ≈ 11,500) of adulteration in olive oils. Notably, high clustering fidelity of 'spectral fingerprints' achieved created opportunity for (hypothesis-free) self-sustaining large database compilation which was never possible without machine learning. (137 words).


Asunto(s)
Contaminación de Alimentos , Aceites de Plantas , Aceites de Plantas/química , Aceite de Oliva/química , Aceite de Girasol , Análisis Espectral , Contaminación de Alimentos/análisis
18.
Int J Biol Macromol ; 262(Pt 1): 129992, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38331070

RESUMEN

Ionic strength condition is a crucial parameter for food processing, but it remains unclear how ionic strength alters the structure and digestibility of binary complexes containing starch and protein/protein hydrolysates. Here, the binary complex with varied ionic strength (0-0.40 M) was built by native corn starch (NS) and soy protein isolate (SPI)/hydrolysates (SPIH) through NaCl. The inclusion of SPI and SPIH allowed a compact network structure, especially the SPIH with reduced molecule size, which enriched the resistant starch (RS) of NS-SPIH. Particularly, the higher ionic strength caused the larger nonperiodic structures and induced loosener network structures, largely increasing the possibility of amylase for starch digestion and resulting in a decreased RS content from 19.07 % to 15.52 %. In other words, the SPIH hindered starch digestion while increasing ionic strength had the opposite effect, which should be considered in staple food production.


Asunto(s)
Almidón Resistente , Almidón , Almidón/química , Almidón Resistente/farmacología , Hidrolisados de Proteína/farmacología , Amilasas , Concentración Osmolar , Digestión
19.
Food Res Int ; 179: 113942, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38342517

RESUMEN

This study aimed to compare the frying performance of palm oil (PO) and high oleic sunflower oil (HOSO) during frying aquatic products. The quality change and frying performance of HOSO and PO during frying of fish cakes were investigated. The oxidation and hydrolysis products of both oils were explored by the nuclear magnetic resonance technique. The results showed that the color deepening rate of PO was higher than that of HOSO. After 18 h of frying, the total polar compound content of PO and HOSO reached 25.67% and 27.50%, respectively. HOSO had lower degree of oxidation than PO after 24 h of continuous frying. The polyunsaturated fatty acid content in HOSO and PO significantly decreased. The oleic acid content in HOSO remained above 80% during the frying process. The major aldehydes in both oils were (E, E)-2,4-alkadienals and n-alkanals and glycerol diesters (DAGs) were abundant in PO. Furthermore, the addition of fish cakes had slight effect on the quality of the frying oil. Therefore, HOSO is an appropriate candidate for frying owing to its excellent frying stability and nutritional value.


Asunto(s)
Culinaria , Aceites de Plantas , Animales , Aceite de Girasol , Aceite de Palma , Culinaria/métodos , Espectroscopía de Resonancia Magnética
20.
Int J Mol Sci ; 25(4)2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38397063

RESUMEN

Persistent immune activation is linked to an increased risk of cardiovascular disease (CVD) in people with HIV (PWH) on antiretroviral therapy (ART). The NLRP3 inflammasome may contribute to elevated CVD risk in PWH. This study utilized peripheral blood mononuclear cells (PBMCs) from 25 PWH and 25 HIV-negative controls, as well as HIV in vitro infections. Transcriptional changes were analyzed using RNAseq and pathway analysis. Our results showed that in vitro HIV infection of macrophages and PBMCs from PWH had increased foam cell formation and expression of the NLRP3 inflammasome components and downstream cytokines (caspase-1, IL-1ß, and IL-18), which was reduced with inhibition of NLRP3 activity using MCC950. Transcriptomic analysis revealed an increased expression of multiple genes involved in lipid metabolism, cholesterol storage, coronary microcirculation disorders, ischemic events, and monocyte/macrophage differentiation and function with HIV infection and oxLDL treatment. HIV infection and NLRP3 activation increased foam cell formation and expression of proinflammatory cytokines, providing insights into the mechanisms underlying HIV-associated atherogenesis. This study suggests that HIV itself may contribute to increased CVD risk in PWH. Understanding the involvement of the inflammasome pathway in HIV atherosclerosis can help identify potential therapeutic targets to mitigate cardiovascular risks in PWH.


Asunto(s)
Aterosclerosis , Células Espumosas , Infecciones por VIH , Humanos , Aterosclerosis/inmunología , Citocinas , Células Espumosas/inmunología , Infecciones por VIH/complicaciones , Infecciones por VIH/inmunología , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Leucocitos Mononucleares/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA