RESUMEN
In this study, a dual-mode biosensor based on the heterojunction of Cu2O@Cu2S/D-TA COF was constructed for ultra-sensitive detection of Hg2+ using both photoelectrochemical and electrochemical approaches. Briefly, a 2D ultra-thin covalent organic framework film (D-TA COF film) with excellent photoelectrochemical signals was prepared on ITO surfaces through an in situ growth method. Subsequently, the probe H1 was immobilized onto the biosensor via Au-S bonds. In the presence of Hg2+, the formation of T-Hg2+-T complexes triggered hybridization chain reactions (HCR), leading to the attachment of abundant Cu2O@Cu2S probes onto the biosensor. As a p-type semiconductor, Cu2O@Cu2S could form a heterojunction with the underlying D-TA COF films. Meanwhile, it exhibited catalase-like activity, and the O2 produced by its catalytic decomposition of H2O2 can interact with the D-TA COF films, thus achieving double amplification of the photocurrent signal. Benefiting from the excellent and inherent Cu2+/Cu+ redox pairs of Cu2O@Cu2S, satisfactory differential pulse voltammetry (DPV) signals were obtained. As expected, the dual-mode biosensor was realized with wider linear ranges and low detection limits. Additionally, the analytical performance for Hg2+ in real water samples was excellent. Briefly, this suggested approach offers a facile and highly efficient modality for monitoring heavy metal ions in aquatic environments.
Asunto(s)
Técnicas Biosensibles , Catalasa , Cobre , Técnicas Electroquímicas , Límite de Detección , Mercurio , Estructuras Metalorgánicas , Técnicas Biosensibles/métodos , Cobre/química , Mercurio/análisis , Mercurio/química , Técnicas Electroquímicas/métodos , Estructuras Metalorgánicas/química , Catalasa/química , Contaminantes Químicos del Agua/análisis , Peróxido de Hidrógeno/química , SulfurosRESUMEN
Acetylcholinesterase (AChE) is regarded as a biomarker of Alzheimer's disease (AD), and its inhibitors show great potential in AD therapy as AChE can increase the neurotoxicity of the amyloid component that induces AD. Because of this, it is crucial and significant to develop a simple and highly sensitive strategy to monitor AChE levels and screen highly efficient AChE inhibitors. Herein, we synthesize an ultrathin two-dimensional (2D) metal-organic framework (MOF) based on copper-catecholate (Cu-CAT) via dextran assisted ultrasound exfoliation, followed by construction of a sensitive sensor for the monitoring AChE and screening of its inhibitors. By adding AChE, the acetylthiocholine (ATCh) substrate is hydrolyzed to be thiocholine (TCh), which decreases the peroxidase-like activity of Cu-CAT nanosheets (Cu-CAT NSs), impairing the signal reaction of 3,3',5,5'-tetramethylbenzidine (TMB) to oxidized-TMB (ox-TMB). In the presence of an AChE inhibitor, the signal can be gradually restored. The newly developed sensor shows high sensitivity and selectivity for AChE and huperzine A (HA, an effective drug for AD, an acetylcholine receptor antagonist), as well as for AD drug discovery from traditional Chinese herbs. The limit of detection of the sensor for AChE is 0.01 mU mL-1 and the average IC50 value of HA is 30.81 nM under the optimal of catalysis conditions. Compared with the 3D bulk Cu-CAT, the current 2D Cu-CAT NSs exhibit higher peroxidase activity due to more catalytic active site exposure. This study provides a strategy to prepare an ultrathin 2D MOF with high catalytic activity and new insights for the construction of a biosensor to monitor AChE and new AD drugs.
Asunto(s)
Técnicas Biosensibles , Estructuras Metalorgánicas , Acetilcolinesterasa , Dextranos , Ultrasonido , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Peroxidasas , Técnicas Biosensibles/métodosRESUMEN
The sensitive and accurate detection of microRNA (miRNA) has meaningful values for clinical diagnosis application as an early stage of tumor markers. Herein, a novel photoelectrochemical (PEC) biosensor was developed for the ultrasensitive and highly selective detection of microRNA-122 (miRNA-122) based on a direct Z-scheme heterojunction of Zn vacancy-mediated CdS/ZnS (CSZS-VZn). Impressively, the prepared Z-scheme heterojunction nanocomposite with defect level properties could make the photogenerated charges stay at the Zn vacancy defect levels and combine photogenerated holes in the valence bands of CdS, thus significantly achieving a better charge carrier separation efficiency and broadening the absorption of visible light and demonstrating 5-8 times enhancement of PEC response compared to single-component materials. Simultaneously, an exonuclease III (Exo-III)-assisted signal amplification strategy and a strand displacement reaction were combined to improve the conversion efficiency of the target and further increase the detection sensitivity. More importantly, the elaborated biosensor showed ultrasensitive and highly specific detection of the target miRNA-122 over a wide linear range from 10 aM to 100 pM with a low detection limit of 3.3 aM and exhibited enormous potential in the fields of bioanalysis and clinical diagnosis.
Asunto(s)
Técnicas Biosensibles , MicroARNs , Técnicas Electroquímicas , Límite de Detección , MicroARNs/genética , Sulfuros , Zinc , Compuestos de ZincRESUMEN
As an early-stage tumor biomarker, microRNA (miRNA) has clinical application potential and its sensitive and accurate detection is significant for early tumor diagnosis. In this study, a photoelectrochemical (PEC) biosensing platform was fabricated for ultrasensitive miRNA-141 detection, which is based on a photocurrent polarity-switchable system using CdS quantum dots (QDs) in the presence of a 5,10,15,20-tetrakis (4-aminophenyl)-21H,23H-porphine (Tph-2H)-coated glassy carbon electrode (GCE). As an excellent photoactive material, Tph-2H has a narrow band gap that effectively gathers photoelectrons under visible light irradiation and improves the transfer ability of photogenerated electrons. Further, the detection sensitivity of miRNA-141 could be significantly improved by combining an enzyme-assisted recycle amplification reaction and a magnetic bead-based separation strategy. The proposed photocurrent polarity-switchable PEC biosensor could efficiently eliminate the false-positive or false-negative signals and achieve a wide linear response range from 1 fM to 1 nM with a low detection limit of 0.33 fM for miRNA-141, providing a potentially alternative solution for detecting other biomarkers in bioanalysis and clinical diagnosis.
Asunto(s)
Biomarcadores de Tumor/análisis , Técnicas Biosensibles , MicroARNs/análisis , Puntos Cuánticos , Técnicas Electroquímicas , Humanos , Límite de DetecciónRESUMEN
We report the fabrication of concave gold (Au) nanocrystals with a set of morphologies and controlled sizes via seeded growth. Starting with Au seeds with a well-defined morphology and uniform size, cubic and rodlike Au nanocrystals with a noticeable concave feature could be successfully obtained, respectively. We also track the growth process and record the shape evolution process. The effect of several reaction parameters on product morphology, such as capping agent and concentration of Ag+, are systematically investigated. Their optical and electrochemical properties are investigated via UV-vis extinction spectroscopy and cyclic voltammetry, respectively. Compared to spherical counterparts, the current concave Au nanocrystals exhibit a noticeable red shift of the absorbance peak in UV-vis extinction spectra and characterized electrochemical behavior of stepped facets, illustrating the morphological advantage.