Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Appl Environ Microbiol ; : e0080724, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940562

RESUMEN

Enterotoxigenic Escherichia coli (ETEC) is a diverse and poorly characterized E. coli pathotype that causes diarrhea in humans and animals. Phages have been proposed for the veterinary biocontrol of ETEC, but effective solutions require understanding of porcine ETEC diversity that affects phage infection. Here, we sequenced and analyzed the genomes of the PHAGEBio ETEC collection, gathering 79 diverse ETEC strains isolated from European pigs with post-weaning diarrhea (PWD). We identified the virulence factors characterizing the pathotype and several antibiotic resistance genes on plasmids, while phage resistance genes and other virulence factors were mostly chromosome encoded. We experienced that ETEC strains were highly resistant to Enterobacteriaceae phage infection. It was only by enrichment of numerous diverse samples with different media and conditions, using the 41 ETEC strains of our collection as hosts, that we could isolate two lytic phages that could infect a large part of our diverse ETEC collection: vB_EcoP_ETEP21B and vB_EcoS_ETEP102. Based on genome and host range analyses, we discussed the infection strategies of the two phages and identified components of lipopolysaccharides ( LPS) as receptors for the two phages. Our detailed computational structural analysis highlights several loops and pockets in the tail fibers that may allow recognition and binding of ETEC strains, also in the presence of O-antigens. Despite the importance of receptor recognition, the diversity of the ETEC strains remains a significant challenge for isolating ETEC phages and developing sustainable phage-based products to address ETEC-induced PWD.IMPORTANCEEnterotoxigenic Escherichia coli (ETEC)-induced post-weaning diarrhea is a severe disease in piglets that leads to weight loss and potentially death, with high economic and animal welfare costs worldwide. Phage-based approaches have been proposed, but available data are insufficient to ensure efficacy. Genome analysis of an extensive collection of ETEC strains revealed that phage defense mechanisms were mostly chromosome encoded, suggesting a lower chance of spread and selection by phage exposure. The difficulty in isolating lytic phages and the molecular and structural analyses of two ETEC phages point toward a multifactorial resistance of ETEC to phage infection and the importance of extensive phage screenings specifically against clinically relevant strains. The PHAGEBio ETEC collection and these two phages are valuable tools for the scientific community to expand our knowledge on the most studied, but still enigmatic, bacterial species-E. coli.

2.
Microorganisms ; 12(2)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38399635

RESUMEN

Flagellum-mediated motility has been suggested to contribute to virulence by allowing bacteria to colonize and spread to new surfaces. In Salmonella enterica and Escherichia coli species, mutants affected by their flagellar motility have shown a reduced ability to form biofilms. While it is known that some species might act as co-aggregation factors for bacterial adhesion, studies of food-related biofilms have been limited to single-species biofilms and short biofilm formation periods. To assess the contribution of flagella and flagellum-based motility to adhesion and biofilm formation, two Salmonella and E. coli mutants with different flagellar phenotypes were produced: the fliC mutants, which do not produce flagella, and the motAB mutants, which are non-motile. The ability of wild-type and mutant strains to form biofilms was compared, and their relative fitness was determined in two-species biofilms with other foodborne pathogens. Our results showed a defective and significant behavior of E. coli in initial surface colonization (p < 0.05), which delayed single-species biofilm formation. Salmonella mutants were not affected by the ability to form biofilm (p > 0.05). Regarding the effect of motility/flagellum absence on bacterial fitness, none of the mutant strains seems to have their relative fitness affected in the presence of a competing species. Although the absence of motility may eventually delay initial colonization, this study suggests that motility is not essential for biofilm formation and does not have a strong impact on bacteria's fitness when a competing species is present.

3.
Sci Adv ; 10(8): eadj0341, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38394193

RESUMEN

Prokaryotes encode multiple distinct anti-phage defense systems in their genomes. However, the impact of carrying a multitude of defense systems on phage resistance remains unclear, especially in a clinical context. Using a collection of antibiotic-resistant clinical strains of Pseudomonas aeruginosa and a broad panel of phages, we demonstrate that defense systems contribute substantially to defining phage host range and that overall phage resistance scales with the number of defense systems in the bacterial genome. We show that many individual defense systems target specific phage genera and that defense systems with complementary phage specificities co-occur in P. aeruginosa genomes likely to provide benefits in phage-diverse environments. Overall, we show that phage-resistant phenotypes of P. aeruginosa with at least 19 phage defense systems exist in the populations of clinical, antibiotic-resistant P. aeruginosa strains.


Asunto(s)
Bacteriófagos , Infecciones por Pseudomonas , Fagos Pseudomonas , Humanos , Bacteriófagos/genética , Pseudomonas aeruginosa , Fagos Pseudomonas/genética , Infecciones por Pseudomonas/microbiología , Antibacterianos
4.
Cell Host Microbe ; 32(4): 557-572.e6, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38402614

RESUMEN

Bacterial defense against phage predation involves diverse defense systems acting individually and concurrently, yet their interactions remain poorly understood. We investigated >100 defense systems in 42,925 bacterial genomes and identified numerous instances of their non-random co-occurrence and negative association. For several pairs of defense systems significantly co-occurring in Escherichia coli strains, we demonstrate synergistic anti-phage activity. Notably, Zorya II synergizes with Druantia III and ietAS defense systems, while tmn exhibits synergy with co-occurring systems Gabija, Septu I, and PrrC. For Gabija, tmn co-opts the sensory switch ATPase domain, enhancing anti-phage activity. Some defense system pairs that are negatively associated in E. coli show synergy and significantly co-occur in other taxa, demonstrating that bacterial immune repertoires are largely shaped by selection for resistance against host-specific phages rather than negative epistasis. Collectively, these findings demonstrate compatibility and synergy between defense systems, allowing bacteria to adopt flexible strategies for phage defense.


Asunto(s)
Bacteriófagos , Bacteriófagos/genética , Escherichia coli/genética , Bacterias , Genoma Bacteriano
5.
bioRxiv ; 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37066137

RESUMEN

Pangenome graphs can represent all variation between multiple genomes, but existing methods for constructing them are biased due to reference-guided approaches. In response, we have developed PanGenome Graph Builder (PGGB), a reference-free pipeline for constructing unbi-ased pangenome graphs. PGGB uses all-to-all whole-genome alignments and learned graph embeddings to build and iteratively refine a model in which we can identify variation, measure conservation, detect recombination events, and infer phylogenetic relationships.

6.
PLoS Biol ; 21(4): e3002072, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37083687

RESUMEN

Anti-clustered regularly interspaced short palindromic repeats (CRISPRs) are proteins capable of blocking CRISPR-Cas systems and typically their genes are located on mobile genetic elements. Since their discovery, numerous anti-CRISPR families have been identified. However, little is known about the distribution and sequence diversity of members within a family, nor how these traits influence the anti-CRISPR's function and evolution. Here, we use AcrIF7 to explore the dissemination and molecular evolution of an anti-CRISPR family. We uncovered 5 subclusters and prevalent anti-CRISPR variants within the group. Remarkably, AcrIF7 homologs display high similarity despite their broad geographical, ecological, and temporal distribution. Although mainly associated with Pseudomonas aeruginosa, AcrIF7 was identified in distinct genetic backgrounds indicating horizontal dissemination, primarily by phages. Using mutagenesis, we recreated variation observed in databases but also extended the sequence diversity of the group. Characterisation of the variants identified residues key for the anti-CRISPR function and other contributing to its mutational tolerance. Moreover, molecular docking revealed that variants with affected function lose key interactions with its CRISPR-Cas target. Analysis of publicly available data and the generated variants suggests that the dominant AcrIF7 variant corresponds to the minimal and optimal anti-CRISPR selected in the family. Our study provides a blueprint to investigate the molecular evolution of anti-CRISPR families.


Asunto(s)
Bacteriófagos , Sistemas CRISPR-Cas , Humanos , Simulación del Acoplamiento Molecular , Sistemas CRISPR-Cas/genética , Bacteriófagos/genética , Evolución Molecular , Mutación
7.
Nat Commun ; 13(1): 3594, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35739117

RESUMEN

There is significant interest in altering the course of cardiometabolic disease development via gut microbiomes. Nevertheless, the highly abundant phage members of the complex gut ecosystem -which impact gut bacteria- remain understudied. Here, we show gut virome changes associated with metabolic syndrome (MetS), a highly prevalent clinical condition preceding cardiometabolic disease, in 196 participants by combined sequencing of bulk whole genome and virus like particle communities. MetS gut viromes exhibit decreased richness and diversity. They are enriched in phages infecting Streptococcaceae and Bacteroidaceae and depleted in those infecting Bifidobacteriaceae. Differential abundance analysis identifies eighteen viral clusters (VCs) as significantly associated with either MetS or healthy viromes. Among these are a MetS-associated Roseburia VC that is related to healthy control-associated Faecalibacterium and Oscillibacter VCs. Further analysis of these VCs revealed the Candidatus Heliusviridae, a highly widespread gut phage lineage found in 90+% of participants. The identification of the temperate Ca. Heliusviridae provides a starting point to studies of phage effects on gut bacteria and the role that this plays in MetS.


Asunto(s)
Bacteriófagos , Enfermedades Cardiovasculares , Síndrome Metabólico , Bacterias/genética , Bacteriófagos/genética , Ecosistema , Humanos , Viroma/genética
8.
Nat Commun ; 13(1): 2987, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35624106

RESUMEN

In the evolutionary arms race against phage, bacteria have assembled a diverse arsenal of antiviral immune strategies. While the recently discovered DISARM (Defense Island System Associated with Restriction-Modification) systems can provide protection against a wide range of phage, the molecular mechanisms that underpin broad antiviral targeting but avoiding autoimmunity remain enigmatic. Here, we report cryo-EM structures of the core DISARM complex, DrmAB, both alone and in complex with an unmethylated phage DNA mimetic. These structures reveal that DrmAB core complex is autoinhibited by a trigger loop (TL) within DrmA and binding to DNA substrates containing a 5' overhang dislodges the TL, initiating a long-range structural rearrangement for DrmAB activation. Together with structure-guided in vivo studies, our work provides insights into the mechanism of phage DNA recognition and specific activation of this widespread antiviral defense system.


Asunto(s)
Bacteriófagos , Antivirales/metabolismo , Bacterias/genética , Bacteriófagos/metabolismo , Evolución Biológica , Enzimas de Restricción-Modificación del ADN/genética
9.
Front Microbiol ; 13: 1083208, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36687636

RESUMEN

In the human gastrointestinal tract, the gut mucosa and the bacterial component of the microbiota interact and modulate each other to accomplish a variety of critical functions. These include digestion aid, maintenance of the mucosal barrier, immune regulation, and production of vitamins, hormones, and other metabolites that are important for our health. The mucus lining of the gut is primarily composed of mucins, large glycosylated proteins with glycosylation patterns that vary depending on factors including location in the digestive tract and the local microbial population. Many gut bacteria have evolved to reside within the mucus layer and thus encode mucus-adhering and -degrading proteins. By doing so, they can influence the integrity of the mucus barrier and therefore promote either health maintenance or the onset and progression of some diseases. The viral members of the gut - mostly composed of bacteriophages - have also been shown to have mucus-interacting capabilities, but their mechanisms and effects remain largely unexplored. In this review, we discuss the role of bacteriophages in influencing mucosal integrity, indirectly via interactions with other members of the gut microbiota, or directly with the gut mucus via phage-encoded carbohydrate-interacting proteins. We additionally discuss how these phage-mucus interactions may influence health and disease states.

10.
Nucleic Acids Res ; 49(19): 10868-10878, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34606606

RESUMEN

To provide protection against viral infection and limit the uptake of mobile genetic elements, bacteria and archaea have evolved many diverse defence systems. The discovery and application of CRISPR-Cas adaptive immune systems has spurred recent interest in the identification and classification of new types of defence systems. Many new defence systems have recently been reported but there is a lack of accessible tools available to identify homologs of these systems in different genomes. Here, we report the Prokaryotic Antiviral Defence LOCator (PADLOC), a flexible and scalable open-source tool for defence system identification. With PADLOC, defence system genes are identified using HMM-based homologue searches, followed by validation of system completeness using gene presence/absence and synteny criteria specified by customisable system classifications. We show that PADLOC identifies defence systems with high accuracy and sensitivity. Our modular approach to organising the HMMs and system classifications allows additional defence systems to be easily integrated into the PADLOC database. To demonstrate application of PADLOC to biological questions, we used PADLOC to identify six new subtypes of known defence systems and a putative novel defence system comprised of a helicase, methylase and ATPase. PADLOC is available as a standalone package (https://github.com/padlocbio/padloc) and as a webserver (https://padloc.otago.ac.nz).


Asunto(s)
Antibiosis/genética , Archaea/genética , Proteínas Arqueales/genética , Bacterias/genética , Proteínas Bacterianas/genética , Bacteriófagos/genética , Programas Informáticos , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Archaea/clasificación , Archaea/metabolismo , Archaea/virología , Proteínas Arqueales/metabolismo , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/virología , Proteínas Bacterianas/metabolismo , Bacteriófagos/crecimiento & desarrollo , Sistemas CRISPR-Cas , ADN Helicasas/genética , ADN Helicasas/metabolismo , Metilasas de Modificación del ADN/genética , Metilasas de Modificación del ADN/metabolismo , Cadenas de Markov , Filogenia , Terminología como Asunto
11.
DNA Res ; 28(4)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34390569

RESUMEN

Bacteriophages are an invaluable source of novel genetic diversity. Sequencing of phage genomes can reveal new proteins with potential uses as biotechnological and medical tools, and help unravel the diversity of biological mechanisms employed by phages to take over the host during viral infection. Aiming to expand the available collection of phage genomes, we have isolated, sequenced, and assembled the genome sequences of four phages that infect the clinical pathogen Klebsiella pneumoniae: vB_KpnP_FBKp16, vB_KpnP_FBKp27, vB_KpnM_FBKp34, and Jumbo phage vB_KpnM_FBKp24. The four phages show very low (0-13%) identity to genomic phage sequences deposited in the GenBank database. Three of the four phages encode tRNAs and have a GC content very dissimilar to that of the host. Importantly, the genome sequences of the phages reveal potentially novel DNA packaging mechanisms as well as distinct clades of tubulin spindle and nucleus shell proteins that some phages use to compartmentalize viral replication. Overall, this study contributes to uncovering previously unknown virus diversity, and provides novel candidates for phage therapy applications against antibiotic-resistant K. pneumoniae infections.


Asunto(s)
Bacteriófagos/genética , Genoma Viral , Klebsiella pneumoniae/virología , Bacteriófagos/aislamiento & purificación , Bacteriófagos/ultraestructura , Genómica , Filogenia , Análisis de Secuencia de ADN , Proteínas Virales/genética
12.
Biophys J ; 120(7): 1198-1209, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33617832

RESUMEN

The ability to detect specific nucleic acid sequences allows for a wide range of applications such as the identification of pathogens, clinical diagnostics, and genotyping. CRISPR-Cas proteins Cas12a and Cas13a are RNA-guided endonucleases that bind and cleave specific DNA and RNA sequences, respectively. After recognition of a target sequence, both enzymes activate indiscriminate nucleic acid cleavage, which has been exploited for sequence-specific molecular diagnostics of nucleic acids. Here, we present a label-free detection approach that uses a readout based on solution turbidity caused by liquid-liquid phase separation (LLPS). Our approach relies on the fact that the LLPS of oppositely charged polymers requires polymers to be longer than a critical length. This length dependence is predicted by the Voorn-Overbeek model, which we describe in detail and validate experimentally in mixtures of polynucleotides and polycations. We show that the turbidity resulting from LLPS can be used to detect the presence of specific nucleic acid sequences by employing the programmable CRISPR-nucleases Cas12a and Cas13a. Because LLPS of polynucleotides and polycations causes solutions to become turbid, the detection of specific nucleic acid sequences can be observed with the naked eye. We furthermore demonstrate that there is an optimal polynucleotide concentration for detection. Finally, we provide a theoretical prediction that hints towards possible improvements of an LLPS-based detection assay. The deployment of LLPS complements CRISPR-based molecular diagnostic applications and facilitates easy and low-cost nucleotide sequence detection.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ARN , Sistemas CRISPR-Cas , ADN/genética , Endonucleasas , ARN/genética
13.
Nucleic Acids Res ; 48(21): 12074-12084, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33219687

RESUMEN

CRISPR-Cas systems require discriminating self from non-self DNA during adaptation and interference. Yet, multiple cases have been reported of bacteria containing self-targeting spacers (STS), i.e. CRISPR spacers targeting protospacers on the same genome. STS has been suggested to reflect potential auto-immunity as an unwanted side effect of CRISPR-Cas defense, or a regulatory mechanism for gene expression. Here we investigated the incidence, distribution, and evasion of STS in over 100 000 bacterial genomes. We found STS in all CRISPR-Cas types and in one fifth of all CRISPR-carrying bacteria. Notably, up to 40% of I-B and I-F CRISPR-Cas systems contained STS. We observed that STS-containing genomes almost always carry a prophage and that STS map to prophage regions in more than half of the cases. Despite carrying STS, genetic deterioration of CRISPR-Cas systems appears to be rare, suggesting a level of escape from the potentially deleterious effects of STS by other mechanisms such as anti-CRISPR proteins and CRISPR target mutations. We propose a scenario where it is common to acquire an STS against a prophage, and this may trigger more extensive STS buildup by primed spacer acquisition in type I systems, without detrimental autoimmunity effects as mechanisms of auto-immunity evasion create tolerance to STS-targeted prophages.


Asunto(s)
Bacterias/genética , Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas/inmunología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/inmunología , Genoma Bacteriano , Profagos/genética , Autoinmunidad/genética , Bacterias/inmunología , Bacterias/virología , Secuencia de Bases , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/inmunología , Proteínas Asociadas a CRISPR/inmunología , Mapeo Cromosómico/estadística & datos numéricos , Programas Informáticos
14.
J Virol ; 94(23)2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-32938760

RESUMEN

The infection of a bacterium by a phage starts with attachment to a receptor molecule on the host cell surface by the phage. Since receptor-phage interactions are crucial to successful infections, they are major determinants of phage host range and, by extension, of the broader effects that phages have on bacterial communities. Many receptor molecules, particularly membrane proteins, are difficult to isolate because their stability is supported by their native membrane environments. Styrene maleic acid lipid particles (SMALPs), a recent advance in membrane protein studies, are the result of membrane solubilizations by styrene maleic acid (SMA) copolymer chains. SMALPs thereby allow for isolation of membrane proteins while maintaining their native environment. Here, we explore SMALPs as a tool to isolate and study phage-receptor interactions. We show that SMALPs produced from taxonomically distant bacterial membranes allow for receptor-specific decrease of viable phage counts of several model phages that span the three largest phage families. After characterizing the effects of incubation time and SMALP concentration on the activity of three distinct phages, we present evidence that the interaction between two model phages and SMALPs is specific to bacterial species and the phage receptor molecule. These interactions additionally lead to DNA ejection by nearly all particles at high phage titers. We conclude that SMALPs are a potentially highly useful tool for phage-host interaction studies.IMPORTANCE Bacteriophages (viruses that infect bacteria or phages) impact every microbial community. All phage infections start with the binding of the viral particle to a specific receptor molecule on the host cell surface. Due to its importance in phage infections, this first step is of interest to many phage-related research and applications. However, many phage receptors are difficult to isolate. Styrene maleic acid lipid particles (SMALPs) are a recently developed approach to isolate membrane proteins in their native environment. In this study, we explore SMALPs as a tool to study phage-receptor interactions. We find that different phage species bind to SMALPs, while maintaining specificity to their receptor. We then characterize the time and concentration dependence of phage-SMALP interactions and furthermore show that they lead to genome ejection by the phage. The results presented here show that SMALPs are a useful tool for future studies of phage-receptor interactions.


Asunto(s)
Bacteriófagos/fisiología , Interacciones Huésped-Patógeno/fisiología , Gotas Lipídicas/química , Maleatos/química , Bacterias/virología , Proteínas de la Membrana Bacteriana Externa , Membrana Celular/fisiología , Proteínas de la Membrana/química , Polímeros/química , Poliestirenos , Solubilidad , Virión
15.
iScience ; 23(9): 101439, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32823052

RESUMEN

An important viromics challenge is associating bacteriophages to hosts. To address this, we developed adsorption sequencing (AdsorpSeq), a readily implementable method to measure phages that are preferentially adsorbed to specific host cell envelopes. AdsorpSeq thus captures the key initial infection cycle step. Phages are added to cell envelopes, adsorbed phages are isolated through gel electrophoresis, after which adsorbed phage DNA is sequenced and compared with the full virome. Here, we show that AdsorpSeq allows for separation of phages based on receptor-adsorbing capabilities. Next, we applied AdsorpSeq to identify phages in a wastewater virome that adsorb to cell envelopes of nine bacteria, including important pathogens. We detected 26 adsorbed phages including common and rare members of the virome, a minority being related to previously characterized phages. We conclude that AdsorpSeq is an effective new tool for rapid characterization of environmental phage adsorption, with a proof-of-principle application to Gram-negative host cell envelopes.

16.
PLoS Comput Biol ; 16(1): e1007314, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31971941

RESUMEN

The last decade has witnessed a remarkable increase in our ability to measure genetic information. Advancements of sequencing technologies are challenging the existing methods of data storage and analysis. While methods to cope with the data deluge are progressing, many biologists have lagged behind due to the fast pace of computational advancements and tools available to address their scientific questions. Future generations of biologists must be more computationally aware and capable. This means they should be trained to give them the computational skills to keep pace with technological developments. Here, we propose a model that bridges experimental and bioinformatics concepts using the Oxford Nanopore Technologies (ONT) sequencing platform. We provide both a guide to begin to empower the new generation of educators, scientists, and students in performing long-read assembly of bacterial and bacteriophage genomes and a standalone virtual machine containing all the required software and learning materials for the course.


Asunto(s)
Biología Computacional/educación , Secuenciación de Nanoporos , Humanos , Programas Informáticos
17.
Nat Microbiol ; 4(10): 1727-1736, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31285584

RESUMEN

Microbiomes are vast communities of microorganisms and viruses that populate all natural ecosystems. Viruses have been considered to be the most variable component of microbiomes, as supported by virome surveys and examples of high genomic mosaicism. However, recent evidence suggests that the human gut virome is remarkably stable compared with that of other environments. Here, we investigate the origin, evolution and epidemiology of crAssphage, a widespread human gut virus. Through a global collaboration, we obtained DNA sequences of crAssphage from more than one-third of the world's countries and showed that the phylogeography of crAssphage is locally clustered within countries, cities and individuals. We also found fully colinear crAssphage-like genomes in both Old-World and New-World primates, suggesting that the association of crAssphage with primates may be millions of years old. Finally, by exploiting a large cohort of more than 1,000 individuals, we tested whether crAssphage is associated with bacterial taxonomic groups of the gut microbiome, diverse human health parameters and a wide range of dietary factors. We identified strong correlations with different clades of bacteria that are related to Bacteroidetes and weak associations with several diet categories, but no significant association with health or disease. We conclude that crAssphage is a benign cosmopolitan virus that may have coevolved with the human lineage and is an integral part of the normal human gut virome.


Asunto(s)
Bacteriófagos/genética , Coevolución Biológica , Microbioma Gastrointestinal , Animales , Bacteriófagos/clasificación , Bacteroidetes/clasificación , Bacteroidetes/genética , Bacteroidetes/virología , ADN Viral/genética , Heces/virología , Femenino , Variación Genética , Humanos , Masculino , Filogenia , Filogeografía , Primates/virología
18.
FEMS Microbiol Lett ; 366(9)2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31077304

RESUMEN

CRISPR-Cas represents the only adaptive immune system of prokaryotes known to date. These immune systems are widespread among bacteria and archaea, and provide protection against invasion of mobile genetic elements, such as bacteriophages and plasmids. As a result of the arms-race between phages and their prokaryotic hosts, phages have evolved inhibitors known as anti-CRISPR (Acr) proteins to evade CRISPR immunity. In the recent years, several Acr proteins have been described in both temperate and virulent phages targeting diverse CRISPR-Cas systems. Here, we describe the strategies of Acr discovery and the multiple molecular mechanisms by which these proteins operate to inhibit CRISPR immunity. We discuss the biological relevance of Acr proteins and speculate on the implications of their activity for the development of improved CRISPR-based research and biotechnological tools.


Asunto(s)
Bacterias/virología , Bacteriófagos/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Evolución Molecular , Interacciones Huésped-Patógeno/genética , Proteínas Virales/genética , Sistemas CRISPR-Cas , Edición Génica
19.
Nucleic Acids Res ; 47(10): 5223-5230, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-30937444

RESUMEN

Microbes have the unique ability to acquire immunological memories from mobile genetic invaders to protect themselves from predation. To confer CRISPR resistance, new spacers need to be compatible with a targeting requirement in the invader's DNA called the protospacer adjacent motif (PAM). Many CRISPR systems encode Cas4 proteins to ensure new spacers are integrated that meet this targeting prerequisite. Here we report that a gene fusion between cas4 and cas1 from the Geobacter sulfurreducens I-U CRISPR-Cas system is capable of introducing functional spacers carrying interference proficient TTN PAM sequences at much higher frequencies than unfused Cas4 adaptation modules. Mutations of Cas4-domain catalytic residues resulted in dramatically decreased naïve and primed spacer acquisition, and a loss of PAM selectivity showing that the Cas4 domain controls Cas1 activity. We propose the fusion gene evolved to drive the acquisition of only PAM-compatible spacers to optimize CRISPR interference.


Asunto(s)
Proteínas Bacterianas/genética , Sistemas CRISPR-Cas , Regulación Bacteriana de la Expresión Génica , Geobacter/genética , Mutación , Proteínas Bacterianas/metabolismo , Dominio Catalítico , ADN Bacteriano/metabolismo , Escherichia coli/metabolismo , Fusión Génica , Genes Bacterianos , Geobacter/metabolismo , Modelos Genéticos , Filogenia , Plásmidos/genética , Análisis de Secuencia de ADN
20.
Sci Rep ; 9(1): 3958, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30850705

RESUMEN

Colorectal cancer is frequently diagnosed at an advanced stage due to the absence of early clinical indicators. Hence, the identification of new targeting molecules is crucial for an early detection and development of targeted therapies. This study aimed to identify and characterize novel peptides specific for the colorectal cancer cell line RKO using a phage-displayed peptide library. After four rounds of selection plus a negative step with normal colorectal cells, CCD-841-CoN, there was an obvious phage enrichment that specifically bound to RKO cells. Cell-based enzyme-linked immunosorbent assay (ELISA) was performed to assess the most specific peptides leading to the selection of the peptide sequence CPKSNNGVC. Through fluorescence microscopy and cytometry, the synthetic peptide RKOpep was shown to specifically bind to RKO cells, as well as to other human colorectal cancer cells including Caco-2, HCT 116 and HCT-15, but not to the normal non-cancer cells. Moreover, it was shown that RKOpep specifically targeted human colorectal cancer cell tissues. A bioinformatics analysis suggested that the RKOpep targets the monocarboxylate transporter 1, which has been implicated in colorectal cancer progression and prognosis, proven through gene knockdown approaches and shown by immunocytochemistry co-localization studies. The peptide herein identified can be a potential candidate for targeted therapies for colorectal cancer.


Asunto(s)
Neoplasias Colorrectales/química , Biblioteca de Péptidos , Péptidos/análisis , Células CACO-2/química , Línea Celular Tumoral/química , Neoplasias Colorrectales/diagnóstico , ADN de Neoplasias/genética , Ensayo de Inmunoadsorción Enzimática , Células HCT116/química , Humanos , Péptidos/genética , Alineación de Secuencia , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA