Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Microbiol Spectr ; 11(4): e0044023, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37409959

RESUMEN

The in vitro growth transformation of primary B cells by Epstein-Barr virus (EBV) is the initial step in the development of posttransplant lymphoproliferative disorder (PTLD). We performed electron microscopic analysis and immunostaining of primary B cells infected with wild-type EBV. Interestingly, the nucleolar size was increased by two days after infection. A recent study found that nucleolar hypertrophy, which is caused by the induction of the IMPDH2 gene, is required for the efficient promotion of growth in cancers. In the present study, RNA-seq revealed that the IMPDH2 gene was significantly induced by EBV and that its level peaked at day 2. Even without EBV infection, the activation of primary B cells by the CD40 ligand and interleukin-4 increased IMPDH2 expression and nucleolar hypertrophy. Using EBNA2 or LMP1 knockout viruses, we found that EBNA2 and MYC, but not LMP1, induced the IMPDH2 gene during primary infections. IMPDH2 inhibition by mycophenolic acid (MPA) blocked the growth transformation of primary B cells by EBV, leading to smaller nucleoli, nuclei, and cells. Mycophenolate mofetil (MMF), which is a prodrug of MPA that is approved for use as an immunosuppressant, was tested in a mouse xenograft model. Oral MMF significantly improved the survival of mice and reduced splenomegaly. Taken together, these results indicate that EBV induces IMPDH2 expression through EBNA2-dependent and MYC-dependent mechanisms, leading to the hypertrophy of the nucleoli, nuclei, and cells as well as efficient cell proliferation. Our results provide basic evidence that IMPDH2 induction and nucleolar enlargement are crucial for B cell transformation by EBV. In addition, the use of MMF suppresses PTLD. IMPORTANCE EBV infections cause nucleolar enlargement via the induction of IMPDH2, which are essential for B cell growth transformation by EBV. Although the significance of IMPDH2 induction and nuclear hypertrophy in the tumorigenesis of glioblastoma has been reported, EBV infection brings about the change quickly by using its transcriptional cofactor, EBNA2, and MYC. Moreover, we present here, for the novel, basic evidence that an IMPDH2 inhibitor, namely, MPA or MMF, can be used for EBV-positive posttransplant lymphoproliferative disorder (PTLD).


Asunto(s)
Infecciones por Virus de Epstein-Barr , Trastornos Linfoproliferativos , Humanos , Herpesvirus Humano 4/genética , Infecciones por Virus de Epstein-Barr/genética , Antígenos Nucleares del Virus de Epstein-Barr/genética , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Proteínas Virales/genética , Hipertrofia , IMP Deshidrogenasa
2.
Cells ; 11(22)2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36429043

RESUMEN

Novel therapeutic targets are needed to better treat osteosarcoma, which is the most common bone malignancy. We previously developed mouse osteosarcoma cells, designated AX (accelerated bone formation) cells from bone marrow stromal cells. AX cells harbor both wild-type and mutant forms of p53 (R270C in the DNA-binding domain, which is equivalent to human R273C). In this study, we showed that mutant p53 did not suppress the transcriptional activation function of wild-type p53 in AX cells. Notably, AXT cells, which are cells derived from tumors originating from AX cells, lost wild-type p53 expression, were devoid of the intact transcription activation function, and were resistant to doxorubicin. ChIP-seq analyses revealed that this mutant form of p53 bound to chromatin in the vicinity of the transcription start sites of various genes but exhibited a different binding profile from wild-type p53. The knockout of mutant p53 in AX and AXT cells by CRISPR-Cas9 attenuated tumor growth but did not affect the invasion of these cells. In addition, depletion of mutant p53 did not prevent metastasis in vivo. Therefore, the therapeutic potency targeting R270C (equivalent to human R273C) mutant p53 is limited in osteosarcoma. However, considering the heterogeneous nature of osteosarcoma, it is important to further evaluate the biological and clinical significance of mutant p53 in various cases.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Ratones , Animales , Humanos , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Línea Celular Tumoral , Osteosarcoma/metabolismo , Procesos Neoplásicos , Neoplasias Óseas/metabolismo
3.
Mol Biol Cell ; 33(9): ar78, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35704469

RESUMEN

Cellular differentiation is characterized by changes in cell morphology that are largely determined by actin dynamics. We previously showed that depolymerization of the actin cytoskeleton triggers the differentiation of preadipocytes into mature adipocytes as a result of inhibition of the transcriptional coactivator activity of megakaryoblastic leukemia 1 (MKL1). The extracellular matrix (ECM) influences cell morphology via interaction with integrins, and reorganization of the ECM is associated with cell differentiation. Here we show that interaction between actin dynamics and ECM rearrangement plays a key role in adipocyte differentiation. We found that depolymerization of the actin cytoskeleton precedes disruption and degradation of fibrillar fibronectin (FN) structures at the cell surface after the induction of adipogenesis in cultured preadipocytes. A FN matrix suppressed both reorganization of the actin cytoskeleton into the pattern characteristic of adipocytes and terminal adipocyte differentiation, and these inhibitory effects were overcome by knockdown of integrin α5 (ITGα5). Peroxisome proliferator-activated receptor γ was required for down-regulation of FN during adipocyte differentiation, and MKL1 was necessary for the expression of ITGα5. Our findings suggest that cell-autonomous down-regulation of FN-ITGα5 interaction contributes to reorganization of the actin cytoskeleton and completion of adipocyte differentiation.


Asunto(s)
Adipogénesis , Fibronectinas , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Diferenciación Celular , Fibronectinas/metabolismo , Integrina alfa5/metabolismo
4.
J Orthop Res ; 39(12): 2732-2743, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33751653

RESUMEN

Osteosarcoma is the most common high-grade malignancy of bone, and novel therapeutic options are urgently required. Previously, we developed mouse osteosarcoma AXT cells that can proliferate both under adherent and nonadherent conditions. Based on metabolite levels, nonadherent conditions were more similar to the in vivo environment than adherent conditions. A drug screen identified MEK inhibitors, including trametinib, that preferentially decreased the viability of nonadherent AXT cells. Trametinib inhibited the cell cycle and induced apoptosis in AXT cells, and both effects were stronger under nonadherent conditions. Trametinib also potently decreased viability in U2OS cells, but its effects were less prominent in MG63 or Saos2 cells. By contrast, MG63 and Saos2 cells were more sensitive to PI3K inhibition than AXT or U2OS cells. Notably, the combination of MAPK/ERK kinase (MEK) and PI3K inhibition synergistically decreased viability in U2OS and AXT cells, but this effect was less pronounced in MG63 or Saos2 cells. Therefore, signal dependence for cell survival and crosstalk between MEK-ERK and PI3K-AKT pathways in osteosarcoma are cell context-dependent. The activation status of other kinases including CREB varied in a cell context-dependent manner, which might determine the response to MEK inhibition. A single dose of trametinib was sufficient to decrease the size of the primary tumor and circulating tumor cells in vivo. Moreover, combined administration of trametinib and rapamycin or conventional anticancer drugs further increased antitumor activity. Thus, given optimal biomarkers for predicting its effects, trametinib holds therapeutic potential for the treatment of osteosarcoma.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Animales , Apoptosis , Neoplasias Óseas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Ratones , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/farmacología , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/metabolismo , Fosfatidilinositol 3-Quinasas
5.
Cancer Sci ; 112(5): 1822-1838, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33068050

RESUMEN

Biliary tract cancer (BTC) arises from biliary epithelial cells (BECs) and includes intrahepatic cholangiocarcinoma (IHCC), gallbladder cancer (GC), and extrahepatic cholangiocarcinoma (EHCC). Although frequent KRAS mutations and epigenetic changes at the INK4A/ARF locus have been identified, the molecular pathogenesis of BTC is unclear and the development of corresponding anticancer agents remains inadequate. We isolated epithelial cell adhesion molecule (EpCAM)-positive BECs from the mouse intrahepatic bile duct, gallbladder, and extrahepatic bile duct, and established organoids derived from these cells. Introduction of activated KRAS and homozygous deletion of Ink4a/Arf in the cells of each organoid type conferred the ability to form lethal metastatic adenocarcinoma with differentiated components and a pronounced desmoplastic reaction on cell transplantation into syngeneic mice, indicating that the manipulated cells correspond to BTC-initiating cells. The syngeneic mouse models recapitulate the pathological features of human IHCC, GC, and EHCC, and they should therefore prove useful for the investigation of BTC carcinogenesis and the development of new therapeutic strategies. Tumor cells isolated from primary tumors formed organoids in three-dimensional culture, and serial syngeneic transplantation of these cells revealed that their cancer stem cell properties were supported by organoid culture, but not by adherent culture. Adherent culture thus attenuated tumorigenic activity as well as the expression of both epithelial and stem cell markers, whereas the expression of epithelial-mesenchymal transition (EMT)-related transcription factor genes and mesenchymal cell markers was induced. Our data show that organoid culture is important for maintenance of epithelial cell characteristics, stemness, and tumorigenic activity of BTC-initiating cells.


Asunto(s)
Neoplasias del Sistema Biliar/genética , Colangiocarcinoma/genética , Células Epiteliales/fisiología , Genes ras , Organoides , Células Madre/fisiología , Factor 1 de Ribosilacion-ADP/genética , Adenocarcinoma/genética , Adenocarcinoma/patología , Animales , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Extrahepáticos/anatomía & histología , Conductos Biliares Extrahepáticos/citología , Conductos Biliares Intrahepáticos/citología , Neoplasias del Sistema Biliar/patología , Colangiocarcinoma/patología , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Modelos Animales de Enfermedad , Molécula de Adhesión Celular Epitelial , Células Epiteliales/química , Transición Epitelial-Mesenquimal , Femenino , Vesícula Biliar/anatomía & histología , Vesícula Biliar/citología , Neoplasias de la Vesícula Biliar/genética , Neoplasias de la Vesícula Biliar/patología , Eliminación de Gen , Genes Supresores de Tumor , Hígado/anatomía & histología , Ratones , Ratones Endogámicos C57BL , Trasplante de Neoplasias/métodos , Organoides/metabolismo , Organoides/patología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Análisis de Matrices Tisulares/métodos , Microambiente Tumoral/fisiología
6.
Cancer Sci ; 111(8): 2689-2695, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32462706

RESUMEN

Chemoresistance is a hallmark of cancer stem cells (CSCs). To develop novel therapeutic strategies that target CSCs, we established osteosarcoma-initiating (OSi) cells by introducing the c-Myc gene into bone marrow stromal cells derived from Ink4a/Arf KO mice. These OSi cells include bipotent committed cells (similar to osteochondral progenitor cells) with a high tumorigenic activity as well as tripotent cells (similar to mesenchymal stem cells) of low tumorigenicity. We recently showed that the tripotent OSi cells are highly resistant to chemotherapeutic agents, and that depolymerization of the actin cytoskeleton in these cells induces their terminal adipocyte differentiation and suppresses their tumorigenicity. We here provide an overview of modulation of actin cytoskeleton dynamics associated with terminal adipocyte differentiation in osteosarcoma as well as discuss the prospects for new therapeutic strategies that target chemoresistant CSCs by inducing their differentiation.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinogénesis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Células Madre Neoplásicas/efectos de los fármacos , Osteosarcoma/tratamiento farmacológico , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/patología , Adipocitos/efectos de los fármacos , Adipocitos/patología , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Carcinogénesis/genética , Carcinogénesis/patología , Diferenciación Celular/genética , Línea Celular Tumoral , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Heterogeneidad Genética , Humanos , Ratones , Células Madre Neoplásicas/patología , Osteosarcoma/patología , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/genética
7.
Genes Cells ; 25(3): 165-174, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31925986

RESUMEN

Adipocyte differentiation is accompanied by a pronounced change in the actin cytoskeleton characterized by the reorganization of filamentous (F)-actin stress fibers into cortical F-actin structures. We previously showed that depolymerization of F-actin stress fibers induced by inactivation of RhoA-ROCK (Rho-associated kinase) signaling acts as a trigger for adipocyte differentiation. The relevance and underlying mechanism of the formation of cortical F-actin structures from depolymerized actin during adipocyte differentiation have remained unclear, however. We have now examined the mechanistic relation between actin dynamics and adipogenic induction. Transient exposure to the actin-depolymerizing agent latrunculin A (LatA) supported the formation of adipocyte-associated cortical actin structures and the completion of terminal adipocyte differentiation in the presence of insulin, whereas long-term exposure to LatA prevented such actin reorganization as well as terminal adipogenesis. Moreover, these effects of insulin were prevented by inhibition of phosphatidylinositol 3-kinase (PI3K)-Rac1 signaling and the actin-related protein 2/3 (Arp2/3) complex which is a critical component of the cortical actin networks. Our findings thus suggest that the insulin-PI3K-Rac1 axis leads to the formation of adipocyte-associated cortical actin structures which is essential for the completion of adipocyte differentiation.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Adipocitos/metabolismo , Insulina/metabolismo , Neuropéptidos/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Ratones
8.
Cancer Res ; 79(12): 3088-3099, 2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-30992323

RESUMEN

Tumors comprise heterogeneous cell types including cancer stem cells (CSC), progenitor cells, and differentiated cells. Chemoresistance is a potential cause of relapse and a key characteristic of CSC, but the development of novel therapeutic approaches for targeting these cells has been limited. We previously established osteosarcoma-initiating (OSi) cells by introducing the gene for c-Myc into bone marrow stromal cells of Ink4a/Arf knockout mice. These OSi cells are composed of two distinct clones: highly tumorigenic cells (AX cells), similar to bipotent committed osteochondral progenitor cells, and tripotent cells of low tumorigenicity (AO cells), similar to mesenchymal stem cells. Here we show that depolymerization of the actin cytoskeleton induces terminal adipocyte differentiation and suppresses tumorigenesis in chemoresistant OSi cells. In contrast to AX cells, AO cells were highly resistant to conventional chemotherapeutic agents such as doxorubicin and were thus identified as chemoresistant cells. Inhibition of Rho-associated coiled-coil containing protein kinase (ROCK) elicited terminal adipocyte differentiation in chemoresistant AO cells through negative regulation of the transcriptional coactivator megakaryoblastic leukemia 1 associated with actin depolymerization. The clinically administered ROCK inhibitor fasudil significantly suppressed growth in vitro and tumorigenicity in vivo of chemoresistant AO cells as well as of OSi cells. Our findings thus suggest a new therapeutic strategy based on the induction of trans-terminal differentiation via modulation of actin cytoskeleton dynamics for therapy-resistant osteosarcoma stem cells. SIGNIFICANCE: These findings suggest that induction of trans-terminal differentiation through regulation of actin dynamics is a potential novel therapeutic approach for targeting chemoresistant stem-like tumor cells.


Asunto(s)
Adipocitos/citología , Carcinogénesis/efectos de los fármacos , Diferenciación Celular , Resistencia a Antineoplásicos/efectos de los fármacos , Células Madre Neoplásicas/efectos de los fármacos , Osteosarcoma/prevención & control , Quinasas Asociadas a rho/antagonistas & inhibidores , Citoesqueleto de Actina/efectos de los fármacos , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Animales , Antineoplásicos/farmacología , Neoplasias Óseas/metabolismo , Neoplasias Óseas/patología , Neoplasias Óseas/prevención & control , Carcinogénesis/metabolismo , Carcinogénesis/patología , Proliferación Celular , Células Cultivadas , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Osteosarcoma/metabolismo , Osteosarcoma/patología
9.
Sci Rep ; 8(1): 6069, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29666462

RESUMEN

Neurofibromatosis type 1 (NF1) is caused by germline mutations in the NF1 gene and is characterized by café au lait spots and benign tumours known as neurofibromas. NF1 encodes the tumour suppressor protein neurofibromin, which negatively regulates the small GTPase Ras, with the constitutive activation of Ras signalling resulting from NF1 mutations being thought to underlie neurofibroma development. We previously showed that knockdown of neurofibromin triggers epithelial-mesenchymal transition (EMT) signalling and that such signalling is activated in NF1-associated neurofibromas. With the use of a cell-based drug screening assay, we have now identified the antiallergy drug tranilast (N-(3,4-dimethoxycinnamoyl) anthranilic acid) as an inhibitor of EMT and found that it attenuated the expression of mesenchymal markers and angiogenesis-related genes in NF1-mutated sNF96.2 cells and in neurofibroma cells from NF1 patients. Tranilast also suppressed the proliferation of neurofibromin-deficient cells in vitro more effectively than it did that of intact cells. In addition, tranilast inhibited sNF96.2 cell migration and proliferation in vivo. Knockdown of type III collagen (COL3A1) also suppressed the proliferation of neurofibroma cells, whereas expression of COL3A1 and SOX2 was increased in tranilast-resistant cells, suggesting that COL3A1 and the transcription factor SOX2 might contribute to the development of tranilast resistance.


Asunto(s)
Antialérgicos/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Neurofibromina 1/genética , ortoaminobenzoatos/farmacología , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Femenino , Eliminación de Gen , Genes de Neurofibromatosis 1/efectos de los fármacos , Mutación de Línea Germinal , Células HeLa , Humanos , Ratones SCID , Invasividad Neoplásica/genética , Invasividad Neoplásica/prevención & control , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neurofibromatosis 1/tratamiento farmacológico , Neurofibromatosis 1/genética
10.
Mol Cancer Ther ; 16(1): 182-192, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27799356

RESUMEN

Osteosarcoma is the most common type of primary bone tumor, novel therapeutic agents for which are urgently needed. To identify such agents, we screened a panel of approved drugs with a mouse model of osteosarcoma. The screen identified simvastatin, which inhibited the proliferation and migration of osteosarcoma cells in vitro Simvastatin also induced apoptosis in osteosarcoma cells in a manner dependent on inhibition of the mevalonate biosynthetic pathway. It also disrupted the function of the small GTPase RhoA and induced activation of AMP-activated protein kinase (AMPK) and p38 MAPK, with AMPK functioning upstream of p38 MAPK. Inhibitors of AMPK or p38 MAPK attenuated the induction of apoptosis by simvastatin, whereas metformin enhanced this effect of simvastatin by further activation of AMPK. Although treatment with simvastatin alone did not inhibit osteosarcoma tumor growth in vivo, its combination with a fat-free diet induced a significant antitumor effect that was enhanced further by metformin administration. Our findings suggest that simvastatin induces apoptosis in osteosarcoma cells via activation of AMPK and p38 MAPK, and that, in combination with other approaches, it holds therapeutic potential for osteosarcoma. Mol Cancer Ther; 16(1); 182-92. ©2016 AACR.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias Óseas/metabolismo , Osteosarcoma/metabolismo , Transducción de Señal/efectos de los fármacos , Simvastatina/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Neoplasias Óseas/genética , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Humanos , Metformina/farmacología , Ratones , Osteosarcoma/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
11.
Nat Commun ; 5: 3368, 2014 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-24569594

RESUMEN

Cellular differentiation is regulated through activation and repression of defined transcription factors. A hallmark of differentiation is a pronounced change in cell shape, which is determined by dynamics of the actin cytoskeleton. Here we show that regulation of the transcriptional coactivator MKL1 (megakaryoblastic leukemia 1) by actin cytoskeleton dynamics drives adipocyte differentiation mediated by peroxisome proliferator-activated receptor γ (PPARγ), a master transcriptional regulator of adipogenesis. Induction of adipocyte differentiation results in disruption of actin stress fibres through downregulation of RhoA-ROCK signalling. The consequent rapid increase in monomeric G-actin leads to the interaction of G-actin with MKL1, which prevents nuclear translocation of MKL1 and allows expression of PPARγ followed by adipogenic differentiation. Moreover, we found that MKL1 and PPARγ act in a mutually antagonistic manner in the adipocytic differentiation programme. Our findings thus provide new mechanistic insight into the relation between the dynamics of cell shape and transcriptional regulation during cellular differentiation.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Adipocitos/metabolismo , Diferenciación Celular , Transactivadores/metabolismo , Células 3T3-L1 , Actinas/genética , Actinas/metabolismo , Adipocitos/citología , Animales , Línea Celular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Immunoblotting , Cinética , Ratones , Microscopía Fluorescente , Células 3T3 NIH , Análisis de Secuencia por Matrices de Oligonucleótidos , PPAR gamma/genética , PPAR gamma/metabolismo , Unión Proteica , Transporte de Proteínas , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Imagen de Lapso de Tiempo , Transactivadores/genética , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA
12.
Biochem J ; 447(2): 239-48, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-22839299

RESUMEN

Transdifferentiation is the conversion of cells from one differentiated cell type into another. How functionally differentiated cells already committed to a specific cell lineage can transdifferentiate into other cell types is a key question in cell biology and regenerative medicine. In the present study we show that porcine ovarian follicular GCs (granulosa cells) can transdifferentiate into osteoblasts in vitro and in vivo. Pure GCs isolated and cultured in Dulbecco's modified Eagle's medium supplemented with 20% FBS (fetal bovine serum) proliferated and dedifferentiated into fibroblast-like cells. We referred to these cells as DFOG (dedifferentiated follicular granulosa) cells. Microarray analysis showed that DFOG cells lost expression of GC-specific marker genes, but gained the expression of osteogenic marker genes during dedifferentiation. After osteogenic induction, DFOG cells underwent terminal osteoblast differentiation and matrix mineralization in vitro. Furthermore, when DFOG cells were transplanted subcutaneously into SCID mice, these cells formed ectopic osteoid tissue. These results indicate that DFOG cells derived from GCs can differentiate into osteoblasts in vitro and in vivo. We suggest that GCs provide a useful model for studying the mechanisms of transdifferentiation into other cell lineages in functionally differentiated cells.


Asunto(s)
Transdiferenciación Celular , Células de la Granulosa/citología , Osteoblastos/citología , Ovario/citología , Animales , Huesos/fisiología , Femenino , Ratones , Ratones SCID , Osteoblastos/trasplante , Sus scrofa
13.
Artículo en Inglés | MEDLINE | ID: mdl-20826223

RESUMEN

We examined the effects of lysophosphatidic acid (LPA) on in vitro proliferation and differentiation of a porcine preadipocyte cell line, DFAT-P, and a mouse preadipocyte cell line, 3T3-L1. During the proliferation and differentiation phases, DFAT-P and 3T3-L1 cells expressed only the endothelial differentiation gene (EDG)-2 receptor and not EDG-4 and EDG-7 receptors. LPA promoted the proliferation of DFAT-P cells more extensively than that of 3T3-L1 cells. After adipogenic induction, LPA inhibited glycerol-3-phosphate dehydrogenase activity and lipid droplet accumulation, and suppressed peroxisome proliferator-activated receptor γ (PPARγ) protein expression, this inhibitory effect in DFAT-P cells was twice as high as that in 3T3-L1 cells. Furthermore, treatments with low LPA concentrations significantly inhibited adipocyte differentiation in DFAT-P cells but not in 3T3-L1 cells. We conclude that LPA promotes the proliferation of porcine preadipocytes through the EDG-2 receptor but inhibits their differentiation, and these effects depend on the down-regulation of PPARγ expression via the EDG-2 receptor. Furthermore, DFAT-P cells are more sensitive to LPA than 3T3-L1 cells. These findings in a porcine model will contribute to the understanding of LPA action mechanisms on in vitro proliferation and differentiation of preadipocytes in domestic animals and/or humans.


Asunto(s)
Adipocitos/citología , Lisofosfolípidos/farmacología , Células Madre/citología , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Ratones , Receptores de Lisoesfingolípidos/genética , Receptores de Lisoesfingolípidos/metabolismo , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Porcinos
14.
Cancer Sci ; 101(3): 759-66, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20085585

RESUMEN

Matrix metalloproteinase (MMP)-9, the 92-kDa type IV collagenase, contributes to tumor invasion and metastases, and strategies to down-regulate its expression could ultimately be of clinical utility. A pyrrole-imidazole (PI) polyamide that targets the activator protein-1 (AP-1)-binding site of the MMP-9 promoter was designed and synthesized as a gene-silencing agent for tumor metastases. The synthesized product showed selective DNA binding ability. The MMP-9 PI polyamide significantly inhibited MMP-9's mRNA expression, protein level, and enzymatic activity in human breast adenocarcinoma cells (MDA-MB-231). Furthermore, the MMP-9 PI polyamide inhibited migration and invasion by in vitro wound-healing and matrigel-invasion assay. The FITC-labeled PI polyamide was localized in nuclei in 45 min of incubation with an MDA-MB-231 cell and remained in the nuclei for up to 96 h after incubation in vitro. It was also quickly localized in the mouse cellular nuclei of many tissues, including liver, kidney, and spleen, after intravenous injection without using any drug-delivery system. Moreover, the polyamide treatment significantly decreased metastasis in a mouse model of liver metastasis. Our results suggest that this PI polyamide, which targets the MMP-9 gene promoter, can be a novel MMP-9 down-regulating molecule for antimetastasis.


Asunto(s)
Imidazoles/farmacología , Inhibidores de la Metaloproteinasa de la Matriz , Metástasis de la Neoplasia/prevención & control , Nylons/farmacología , Pirroles/farmacología , Transcripción Genética/efectos de los fármacos , Animales , Línea Celular Tumoral , Células HeLa , Humanos , Masculino , Metaloproteinasa 9 de la Matriz/genética , Ratones , Ratones Endogámicos BALB C , Regiones Promotoras Genéticas
15.
J Cell Biochem ; 109(3): 542-52, 2010 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-20013788

RESUMEN

Development of established preadipocyte cell lines, such as 3T3-L1 and 3T3-F442A, greatly facilitated the study of molecular mechanisms of adipocyte differentiation under defined conditions. Most of these cell lines are derived from mouse embryos, and preadipocyte cell lines of other species have not yet been maintained in culture long enough to study differentiation under a variety of conditions. This is the first report on the establishment of porcine preadipocyte cell lines derived from mature adipocytes by a simple method, known as ceiling culture, for culturing mature adipocytes in vitro. This cell line can proliferate extensively until the cells become confluent and fully differentiated into mature adipocytes, depending on adipogenic induction. No changes in their differentiation pattern are observed during their propagation, and they have been successfully carried and differentiated for at least 37 passages. This cell line maintains a normal phenotype without transforming spontaneously, even after long-term maintenance in culture. This achievement may lead to easy establishment of porcine preadipocyte cell lines and novel model systems for studying the mechanisms of adipocyte differentiation and metabolism as a substitute for human preadipocytes.


Asunto(s)
Adipocitos/citología , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Células Madre/citología , Adipocitos/metabolismo , Animales , Línea Celular , Proliferación Celular , Femenino , Masculino , Sus scrofa
16.
Cell Tissue Res ; 332(3): 435-46, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18386066

RESUMEN

We established a preadipocyte cell line from mature adipocytes obtained from subcutaneous fat tissue of green fluorescent protein (GFP) transgenic mice. The floating top layer, containing mature adipocytes, was isolated from subcutaneous fat tissue by collagenase digestion and filtration. Fluorescence-activated cell sorting and microscopic analysis revealed that the floating cell fraction comprised a highly homogeneous adipocyte population with no adipose stromal-vascular cells. Isolated mature adipocytes dedifferentiated into fibroblast-like cells and actively proliferated in ceiling culture. In vitro studies showed that the cells could redifferentiate into mature adipocytes in an identical way to 3T3-L1 preadipocytes. No changes in the differentiation pattern were observed during the propagation of our cells. They were successfully maintained and differentiated for at least 22 passages. We named these cells dedifferentiated fat (DFAT-GFP) cells. When DFAT-GFP cells were implanted subcutaneously into C57BL/6N mice, they developed highly vascularized fat pads that morphologically resembled normal subcutaneous adipose tissue and consisted of GFP-positive cells; however, implanted 3T3-L1 cells did not have such an effect on the mice. We conclude that DFAT-GFP cells provide a model that should enable us to study the mechanisms of adipocyte differentiation and adipose tissue formation in vivo and in vitro.


Asunto(s)
Adipocitos/citología , Tejido Adiposo/citología , Línea Celular , Células Madre/citología , Animales , Técnicas de Cultivo de Célula , Desdiferenciación Celular , Diferenciación Celular , Proliferación Celular , Separación Celular , Femenino , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA