Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Nat Commun ; 13(1): 7616, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36539413

RESUMEN

The emergence of forests on Earth (~385 million years ago, Ma)1 has been linked to an order-of-magnitude decline in atmospheric CO2 levels and global climatic cooling by altering continental weathering processes, but observational constraints on atmospheric CO2 before the rise of forests carry large, often unbound, uncertainties. Here, we calibrate a mechanistic model for gas exchange in modern lycophytes and constrain atmospheric CO2 levels 410-380 Ma from related fossilized plants with bound uncertainties of approximately ±100 ppm (1 sd). We find that the atmosphere contained ~525-715 ppm CO2 before continents were afforested, and that Earth was partially glaciated according to a palaeoclimate model. A process-driven biogeochemical model (COPSE) shows the appearance of trees with deep roots did not dramatically enhance atmospheric CO2 removal. Rather, shallow-rooted vascular ecosystems could have simultaneously caused abrupt atmospheric oxygenation and climatic cooling long before the rise of forests, although earlier CO2 levels are still unknown.


Asunto(s)
Dióxido de Carbono , Ecosistema , Bosques , Atmósfera , Árboles
2.
Materials (Basel) ; 15(7)2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35407858

RESUMEN

Surfactant flooding is an enhanced oil recovery method that recovers residual and capillary trapped oil by improving pore-scale displacement efficiency. Low retention of injected chemicals is desired to ensure an economic and cost-effective recovery process. This paper examines the adsorption behavior of a novel gemini cationic surfactant on carbonate cores. The rock cores were characterized using an X-ray diffraction (XRD) spectroscope. In addition, the influence of critical parameters on the dynamic adsorption of the cationic gemini surfactant was studied by injecting the surfactant solution through carbonate cores in a core flooding apparatus until an equilibrium state was achieved. The concentration of surfactant was observed using high performance liquid chromatography. Experimental results showed that an increasing surfactant concentration causes higher retention of the surfactant. Moreover, increasing the flow rate to 0.2 mL/min results in lowering the surfactant retention percentage to 17%. At typical high salinity and high temperature conditions, the cationic gemini surfactant demonstrated low retention (0.42 mg/g-rock) on an Indiana limestone core. This study extends the frontier of knowledge in gemini surfactant applications for enhanced oil recovery.

3.
Heliyon ; 5(6): e01943, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31286082

RESUMEN

Plasma treatment is an efficient method to modify organic surfaces. In this work electrospun polyphenylsulfone was systematically subjected to low-pressure microwave plasma and atmospheric-pressure coplanar barrier discharge in order to control the surface chemistry, which is important for controlling surface properties. Polar anchor groups such as keto/aldehyde groups and especially carboxylic acid groups affect hydrophilicity. The composition of plasma-induced chemical anchor groups can be monitored (and thus controlled) by X-ray photoelectron spectroscopy. The atmospheric-pressure plasma provided subtle oxidation, and the low-pressure plasma provided significant oxidation that resulted in polyphenylsulfone surfaces with a very high hydrophilicity. The low-pressure plasma treated polyphenylsulfone exhibited a significant age effect over 212 days, which was attributed to a diffusion phenomenon where the polyphenylsulfone surface becomes enriched in non-oxidated polyphenylsulfone. It was shown that the improved hydrophilicity will diminish but not vanish in time.

4.
Adv Mater ; 31(10): e1805970, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30637817

RESUMEN

The metallic interface between two oxide insulators, such as LaAlO3 /SrTiO3 (LAO/STO), provides new opportunities for electronics and spintronics. However, due to the presence of multiple orbital populations, tailoring the interfacial properties such as the ground state and metal-insulator transitions remains challenging. Here, an unforeseen tunability of the phase diagram of LAO/STO is reported by alloying LAO with a ferromagnetic LaMnO3 insulator without forming lattice disorder and at the same time without changing the polarity of the system. By increasing the Mn-doping level, x, of LaAl1- x Mnx O3 /STO (0 ≤ x ≤ 1), the interface undergoes a Lifshitz transition at x = 0.225 across a critical carrier density of nc = 2.8 × 1013 cm-2 , where a peak TSC ≈255 mK of superconducting transition temperature is observed. Moreover, the LaAl1- x Mnx O3 turns ferromagnetic at x ≥ 0.25. Remarkably, at x = 0.3, where the metallic interface is populated by only dxy electrons and just before it becomes insulating, a same device with both signatures of superconductivity and clear anomalous Hall effect (7.6 × 1012 cm-2 < ns ≤ 1.1 × 1013 cm-2 ) is achieved reproducibly. This provides a unique and effective way to tailor oxide interfaces for designing on-demand electronic and spintronic devices.

5.
RSC Adv ; 9(1): 278-286, 2018 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-35521605

RESUMEN

Electrospun nanofiber membrane-supported thin film composite (TFC) membranes exhibit great potential in water purification. In this work, electrospun polyphenylsulfone (PPSU) nanofiber membranes were prepared and modified by heat and plasma treatments. The resulting membranes were used as support layers for biomimetic TFC-based forward osmosis membranes. Thermal treatment transformed a loose non-woven nanofiber structure into a robust interconnected 3-dimensional PPSU network displaying a 930% increase in elastic modulus, 853% increase in maximum stress, and two-fold increase in breaking strain. Superior hydrophilicity of PPSU nanofiber membranes was achieved by low-pressure plasma treatment, changing the contact angle from 137° to 0°. The fabricated exemplary TFC-based forward osmosis membrane showed an osmotic water flux J w > 14 L m-2 h-1 with a very low reserve salt flux J s (J s/J w = 0.08 g L-1) demonstrating the potential for making high quality membranes for water treatment using PPSU-based support layers for TFC membranes.

6.
RSC Adv ; 8(22): 12211-12221, 2018 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-35539404

RESUMEN

The detailed crystal structures and high temperature thermoelectric properties of polycrystalline Ca3-2x Na2x Co4-x W x O9 (0 ≤ x ≤ 0.075) samples have been investigated. Powder X-ray diffraction data show that all samples are phase pure, with no detectable traces of impurity. The diffraction peaks shift to lower angle values with increase in doping (x), which is consistent with larger ionic radii of Na+ and W6+ ions. X-ray photoelectron spectroscopy data reveal that a mixture of Co2+, Co3+ and Co4+ valence states are present in all samples. It has been observed that electrical resistivity (ρ), Seebeck coefficient (S) and thermal conductivity (κ) are all improved with dual doping of Na and W in Ca3Co4O9 system. A maximum power factor (PF) of 2.71 × 10-4 W m-1 K-2 has been obtained for x = 0.025 sample at 1000 K. The corresponding thermoelectric figure of merit (zT) for x = 0.025 sample is calculated to be 0.21 at 1000 K, which is ∼2.3 times higher than zT value of the undoped sample. These results suggest that Na and W dual doping is a promising approach for improving thermoelectric properties of Ca3Co4O9 system.

7.
ACS Appl Mater Interfaces ; 10(1): 1434-1439, 2018 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-29226677

RESUMEN

A chemical redox reaction can lead to a two-dimensional electron gas at the interface between a TiO2-terminated SrTiO3 (STO) substrate and an amorphous LaAlO3 capping layer. When replacing the STO substrate with rutile and anatase TiO2 substrates, considerable differences in the interfacial conduction are observed. On the basis of X-ray photoelectron spectroscopy (XPS) and transport measurements, we conclude that the interfacial conduction comes from redox reactions, and that the differences among the materials systems result mainly from variations in the activation energies for the diffusion of oxygen vacancies at substrate surfaces.

8.
Ultramicroscopy ; 170: 69-76, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27552435

RESUMEN

High temperature AC conductance mapping is a scanning probe technique for resolving local electrical properties in microscopic areas. It is especially suited for detecting poorly conducting phases and for ionically conducting materials such as those used in solid oxide electrochemical cells. Secondary silicate phases formed at the edge of lanthanum strontium manganite microelectrodes are used as an example for correlation of chemical, microstructural and electrical properties with a spatial resolution of 1-2µm to demonstrate the technique. The measurements are performed in situ in a controlled atmosphere high temperature scanning probe microscope at 650°C in air.

9.
Dalton Trans ; 43(40): 14949-58, 2014 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-24860844

RESUMEN

TOF-SIMS analyses of state-of-the-art high temperature solid oxide electrolysis cells before and after testing under different operating conditions were performed. The investigated cells consist of an yttria stabilized zirconia (YSZ) electrolyte, a La1-xSrxMnO3-δ composite anode and a Ni-YSZ cermet cathode. The surfaces and cross-sections of the cells were analyzed, and several elemental impurities like Si, Ca and Na were identified and spatially mapped and their enrichment and migration during operation is reported. With advancing operation time, the concentration of these elements, especially Na and Ca, increases. For Si, a concentration gradient is found from the gas inlet to the gas outlet. Additionally, a loss of Ni percolation in the active cathode is observed in the same area where the Si enrichment is found. Based on the obtained TOF-SIMS results, the influence of the operating conditions on degradation is discussed.

10.
Phys Chem Chem Phys ; 14(33): 11824-45, 2012 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-22828664

RESUMEN

This work is part of the inter-laboratory collaboration to study the stability of seven distinct sets of state-of-the-art organic photovoltaic (OPV) devices prepared by leading research laboratories. All devices have been shipped to and degraded at RISØ-DTU up to 1830 hours in accordance with established ISOS-3 protocols under defined illumination conditions. In this work, we apply the Incident Photon-to-Electron Conversion Efficiency (IPCE) and the in situ IPCE techniques to determine the relation between solar cell performance and solar cell stability. Different ageing conditions were considered: accelerated full sun simulation, low level indoor fluorescent lighting and dark storage. The devices were also monitored under conditions of ambient and inert (N(2)) atmospheres, which allows for the identification of the solar cell materials more susceptible to degradation by ambient air (oxygen and moisture). The different OPVs configurations permitted the study of the intrinsic stability of the devices depending on: two different ITO-replacement alternatives, two different hole extraction layers (PEDOT:PSS and MoO(3)), and two different P3HT-based polymers. The response of un-encapsulated devices to ambient atmosphere offered insight into the importance of moisture in solar cell performance. Our results demonstrate that the IPCE and the in situ IPCE techniques are valuable analytical methods to understand device degradation and solar cell lifetime.

11.
Phys Chem Chem Phys ; 14(33): 11780-99, 2012 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-22829118

RESUMEN

The present work is the fourth (and final) contribution to an inter-laboratory collaboration that was planned at the 3rd International Summit on Organic Photovoltaic Stability (ISOS-3). The collaboration involved six laboratories capable of producing seven distinct sets of OPV devices that were degraded under well-defined conditions in accordance with the ISOS-3 protocols. The degradation experiments lasted up to 1830 hours and involved more than 300 cells on more than 100 devices. The devices were analyzed and characterized at different points of their lifetimes by a large number of non-destructive and destructive techniques in order to identify specific degradation mechanisms responsible for the deterioration of the photovoltaic response. Work presented herein involves time-of-flight secondary ion mass spectrometry (TOF-SIMS) in order to study chemical degradation in-plane as well as in-depth in the organic solar cells. Various degradation mechanisms were investigated and correlated with cell performance. For example, photo-oxidation of the active material was quantitatively studied as a function of cell performance. The large variety of cell architectures used (some with and some without encapsulation) enabled valuable comparisons and important conclusions to be drawn on degradation behaviour. This comprehensive investigation of OPV stability has significantly advanced the understanding of degradation behaviour in OPV devices, which is an important step towards large scale application of organic solar cells.

12.
Adv Mater ; 24(5): 580-612, 2012 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-22213056

RESUMEN

Organic photovoltaics (OPVs) evolve in an exponential manner in the two key areas of efficiency and stability. The power conversion efficiency (PCE) has in the last decade been increased by almost a factor of ten approaching 10%. A main concern has been the stability that was previously measured in minutes, but can now, in favorable circumstances, exceed many thousands of hours. This astonishing achievement is the subject of this article, which reviews the developments in stability/degradation of OPVs in the last five years. This progress has been gained by several developments, such as inverted device structures of the bulk heterojunction geometry device, which allows for more stable metal electrodes, the choice of more photostable active materials, the introduction of interfacial layers, and roll-to-roll fabrication, which promises fast and cheap production methods while creating its own challenges in terms of stability.


Asunto(s)
Suministros de Energía Eléctrica , Polímeros/química , Diseño de Equipo , Energía Solar
13.
ACS Nano ; 5(5): 4188-96, 2011 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-21513333

RESUMEN

Aqueous nanoparticle dispersions of a series of three low-band-gap polymers poly[4,8-bis(2-ethylhexyloxy)benzo(1,2-b:4,5-b')dithiophene-alt-5,6-bis(octyloxy)-4,7-di(thiophen-2-yl)(2,1,3-benzothiadiazole)-5,5'-diyl] (P1), poly[(4,4'-bis(2-ethylhexyl)dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-(2,1,3-benzothiadiazole)-4,7-diyl] (P2), and poly[2,3-bis-(3-octyloxyphenyl)quinoxaline-5,8-diyl-alt-thiophene-2,5-diyl] (P3) were prepared using ultrasonic treatment of a chloroform solution of the polymer and [6,6]-phenyl-C(61)-butyric acid methyl ester ([60]PCBM) mixed with an aqueous solution of sodium dodecylsulphate (SDS). The size of the nanoparticles was established using small-angle X-ray scattering (SAXS) of the aqueous dispersions and by both atomic force microscopy (AFM) and using both grazing incidence SAXS (GISAXS) and grazing incidence wide-angle X-ray scattering (GIWAXS) in the solid state as coated films. The aqueous dispersions were dialyzed to remove excess detergent and concentrated to a solid content of approximately 60 mg mL(-1). The formation of films for solar cells using the aqueous dispersion required the addition of the nonionic detergent FSO-100 at a concentration of 5 mg mL(-1). This enabled slot-die coating of high quality films with a dry thickness of 126 ± 19, 500 ± 25, and 612 ± 22 nm P1, P2, and P3, respectively for polymer solar cells. Large area inverted polymer solar cells were thus prepared based on the aqueous inks. The power conversion efficiency (PCE) reached for each of the materials was 0.07, 0.55, and 0.15% for P1, P2, and P3, respectively. The devices were prepared using coating and printing of all layers including the metal back electrodes. All steps were carried out using roll-to-roll (R2R) slot-die and screen printing methods on flexible substrates. All five layers were processed using environmentally friendly methods and solvents. Two of the layers were processed entirely from water (the electron transport layer and the active layer).


Asunto(s)
Suministros de Energía Eléctrica , Electrodos , Nanoestructuras/química , Nanoestructuras/ultraestructura , Nanotecnología/instrumentación , Energía Solar , Agua/química , Diseño de Equipo , Análisis de Falla de Equipo , Tamaño de la Partícula
14.
J Am Chem Soc ; 132(47): 16883-92, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21053947

RESUMEN

The spatial distribution of reaction products in multilayer polymer solar cells induced by water and oxygen atmospheres was mapped and used to elucidate the degradation patterns and failure mechanisms in an inverted polymer solar cell. The active material comprised a bulk heterojunction formed by poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) sandwiched between a layer of zinc oxide and a layer of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) that acted as, respectively, electron and hole transporting layers between the active material and the two electrodes indium-tin-oxide (ITO) and printed silver. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) in conjunction with isotopic labeling using H(2)(18)O and (18)O(2) enabled detailed information on where and to what extent uptake took place. A comparison was made between the use of a humid (oxygen-free) atmosphere and a dry oxygen atmosphere during testing of devices that were kept in the dark and devices that were subjected to illumination under simulated sunlight. It was found that the reactions taking place at the interface between the active layer and the PEDOT:PSS were the major cause of device failure in the case of these inverted devices, which are compatible with full roll-to-roll (R2R) coating and industrial manufacture. The PEDOT:PSS was found to phase separate, with the PEDOT-rich phase being responsible for most of the interface degradation in oxygen atmospheres. In water atmospheres, little chemically induced degradation was observed, whereas a large partially reversible dependence of the open circuit voltage on the relative humidity was observed. In addition, temporal aspects are discussed in regard to degradation mechanisms. Finally, analytical aspects in regard to storing devices are discussed.

15.
ACS Appl Mater Interfaces ; 2(3): 877-87, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20356294

RESUMEN

We report on the use of intense visible light with a narrow spectral distribution matched to the region where the conjugated polymer material absorbs to selectively heat the active material and induce thermocleavage. We show a full roll-to-roll process, leading to complete large-area polymer solar cell modules using light-induced thermocleavage. The process employs full solution processing in air for all five layers in the device and does not employ indium-tin oxide or vacuum processing. The process steps were carefully analyzed using X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, attenuated total reflectance infrared, and transmission/reflection UV-vis techniques.

16.
ACS Appl Mater Interfaces ; 1(1): 102-12, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20355761

RESUMEN

Water-induced degradation of polymer photovoltaics based on the active materials poly(3-hexylthiophene) (P3HT) or poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] (MEHPPV) was studied. The solar cell devices comprised a bulk heterojunction formed by the active material and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) in a standard device geometry. The use of H2(18)O in conjunction with time-of-flight secondary ion mass spectrometry enabled mapping of the parts of the device that were induced by water. A comparison was made between the two active materials and between devices that were kept in the dark and devices that had been subjected to illumination under simulated sunlight. Devices that were exposed to ambient humidity were compared to devices exposed to saturated humidity. Finally, a comparison was made between results obtained using H2(18)O and earlier work involving 18O2. Water was found to have behavior similar to but not identical with molecular oxygen.

17.
Langmuir ; 24(1): 182-8, 2008 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-18052396

RESUMEN

The range of materials susceptible to electrochemically assisted grafting onto carbon materials has been expanded to include a new group of compounds. This new approach is based on the reduction of symmetrical or unsymmetrical triarylsulfonium salts and alkyldiphenylsulfonium salts. Our findings suggest that it is possible to form layers of aryl moieties on the surface and that the unsymmetrical triarylsulfonium salts cleave upon reduction in a direction dictated by the substituent on the rings (i.e., (4-methoxyphenyl)diphenylsulfonium salt leads to a film made predominantly of phenyl groups, whereas (4-chlorophenyl)diphenylsulfonium salt leads to a mixture of phenyl and chlorophenyl groups). These relationships may be understood by considering the inductive nature of the substituent with regard to the aryl-S bonds and are supported by preparative experiments. Upon reduction, the alkyldiphenylsulfonium salts are found to cleave almost exclusively to an alkyl radical and diphenyl sulfide. As judged from the electrochemical blocking properties of the films made from such species, either relatively thick or compact films are formed. The mass spectrometric analysis indicates that the films are made of a combination of alkyl and aryl groups and possibly related structural derivatives. Importantly, our findings provide evidence that it is possible to graft electrode surfaces with reactive aryl radicals even using precursors reduced at potentials that are substantially more negative than the estimated reduction potential of the grafting radical.

18.
Langmuir ; 23(7): 3786-93, 2007 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-17309284

RESUMEN

The applicability and versatility of the recently communicated procedure for the grafting of conducting carbon substrates by diaryliodonium salts is expanded. We have found that several types of organic arylic layers can be formed on the carbon surface and that the chemical functionalities of the thus formed layers can be varied extensively over electron withdrawing (for example, -NO2) to electron donating (for example, -OMe) groups. A comparative study involving the grafting of aryldiazonium salts reveals that, despite the two approaches being similar, iodonium salts exhibit spontaneous grafting to a significantly lower extent. Nevertheless, the grafted layer becomes less accessible to proton transport as visualized from a greater reluctance toward the reduction of surface-confined nitro groups to amino groups in acidic medium. Employment of unsymmetrical iodonium salts opens up the interesting possibility of forming organic films consisting of a mixture of two different aryl groups. Alternatively, such composite layers may be prepared by selecting iodonium and diazonium salts with comparable reduction properties. Analysis of the surfaces is carried out by means of cyclic voltammetry, X-ray photoelectron spectroscopy, and ToF-SIMS (time-of-flight secondary-ion mass spectrometry). The ToF-SIMS analysis primarily serves to provide unambiguous evidence for the covalent attachment of the organic layers to the surface.

19.
J Am Chem Soc ; 127(17): 6466-75, 2005 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-15853355

RESUMEN

Two different alkyl radicals can be expelled when unsymmetrical aliphatic amine radical cations undergo C-C bond cleavage. The branching ratio is strongly dependent on the internal energy of the reactant, even when the competition involves loss of closely related alkyl radicals. In mass spectrometers, the rate of loss of the smaller radical (excepting methyl) always exceeds the rate of loss of the larger close to threshold. The preference is reversed for the more highly energized ions that react in the ion source, demonstrating that the rate of loss of the larger radical rises much more rapidly with increasing internal energy than does the rate of loss of the smaller radical. This result is not easily reconciled with a simple RRKM model, given the expected strong resemblance between the transition states involved, whereas it agrees well with a description based on variational transition state theory. The heats of formation of the products determined with the G3 composite ab initio method show that loss of the smaller radical is without exception the more favorable reaction. The relative rates of the competing C-C bond cleavage reactions of the metastable ions vary with the number of degrees of freedom of the reactant, with the critical energy of the reaction, and with the difference between the heats of formation of the products. The presence of intermediate energy barriers when cleavage occurs at a branching point can give rise to variations in relative rates that are not easily interpreted.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA