Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 503
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biomed Opt ; 30(Suppl 1): S13703, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39034959

RESUMEN

Significance: Standardization of fluorescence molecular imaging (FMI) is critical for ensuring quality control in guiding surgical procedures. To accurately evaluate system performance, two metrics, the signal-to-noise ratio (SNR) and contrast, are widely employed. However, there is currently no consensus on how these metrics can be computed. Aim: We aim to examine the impact of SNR and contrast definitions on the performance assessment of FMI systems. Approach: We quantified the SNR and contrast of six near-infrared FMI systems by imaging a multi-parametric phantom. Based on approaches commonly used in the literature, we quantified seven SNRs and four contrast values considering different background regions and/or formulas. Then, we calculated benchmarking (BM) scores and respective rank values for each system. Results: We show that the performance assessment of an FMI system changes depending on the background locations and the applied quantification method. For a single system, the different metrics can vary up to ∼ 35 dB (SNR), ∼ 8.65 a . u . (contrast), and ∼ 0.67 a . u . (BM score). Conclusions: The definition of precise guidelines for FMI performance assessment is imperative to ensure successful clinical translation of the technology. Such guidelines can also enable quality control for the already clinically approved indocyanine green-based fluorescence image-guided surgery.


Asunto(s)
Benchmarking , Imagen Molecular , Imagen Óptica , Fantasmas de Imagen , Relación Señal-Ruido , Imagen Molecular/métodos , Imagen Molecular/normas , Imagen Óptica/métodos , Imagen Óptica/normas , Procesamiento de Imagen Asistido por Computador/métodos
2.
NPJ Cardiovasc Health ; 1(1): 14, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39246665

RESUMEN

Indocyanine green (ICG)-enhanced intravascular near-infrared fluorescence (NIRF) imaging enhances the information obtained with intravascular ultrasound (IVUS) by visualizing pathobiological characteristics of atherosclerotic plaques. To advance our understanding of this hybrid method, we aimed to assess the potential of NIRF-IVUS to identify different stages of atheroma progression by characterizing ICG uptake in human pathological specimens. After excision, 15 human coronary specimens from 13 adult patients were ICG-perfused and imaged with NIRF-IVUS. All specimens were then histopathologically and immunohistochemically assessed. NIRF-IVUS imaging revealed colocalization of ICG-deposition to plaque areas of lipid accumulation, endothelial disruption, neovascularization and inflammation. Moreover, ICG concentrations were significantly higher in advanced coronary artery disease stages (p < 0.05) and correlated significantly to plaque macrophage burden (r = 0.67). Current intravascular methods fail to detect plaque biology. Thus, we demonstrate how human coronary atheroma stage can be assessed based on pathobiological characteristics uniquely captured by ICG-enhanced intravascular NIRF.

3.
Nat Commun ; 15(1): 7521, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39214964

RESUMEN

Fiber-based interferometers receive significant interest as they lead to miniaturization of optoacoustic and ultrasound detectors without the quadratic loss of sensitivity common to piezoelectric elements. Nevertheless, in contrast to piezoelectric crystals, current fiber-based ultrasound detectors operate with narrow ultrasound bandwidth which limits the application range and spatial resolution achieved in imaging implementations. We port the concept of silicon waveguide etalon detection to optical fibers using a sub-acoustic reflection terminator to a Bragg grating embedded etalon resonator (EER), uniquely implementing direct and forward-looking access to incoming ultrasound waves. Precise fabrication of the terminator is achieved by continuously recording the EER spectrum during polishing and fitting the spectra to a theoretically calculated spectrum for the selected thickness. Characterization of the EER inventive design reveals a small aperture (10.1 µm) and an ultra-wide bandwidth (160 MHz) that outperforms other fiber resonators and enables an active detection area and overall form factor that is smaller by more than an order of magnitude over designs based on piezoelectric transducers. We discuss how the EER paves the way for the most adept fiber-based miniaturized sound detection today, circumventing the limitations of currently available designs.

4.
Photoacoustics ; 38: 100628, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39055739

RESUMEN

Microcirculatory dysfunction has been observed in the dermal white adipose tissue (dWAT) and subcutaneous white adipose tissue (scWAT) of obese humans and has been proposed as an early prediction marker for cardio-metabolic disease progression. In-vivo visualization and longitudinal monitoring of microvascular remodeling in these tissues remains challenging. We compare the performance of two optoacoustic imaging methods, i.e. multi-spectral optoacoustic tomography (MSOT) and raster-scanning optoacoustic mesoscopy (RSOM) in visualizing lipid and hemoglobin contrast in scWAT and dWAT in a mouse model of diet-induced obesity (DIO) undergoing voluntary wheel running intervention for 32 weeks. MSOT visualized lipid and hemoglobin contrast in murine fat depots in a quantitative manner even at early stages of DIO. We show for the first time to our knowledge that RSOM allows precise visualization of the dWAT microvasculature and provides quantitative readouts of skin layer thickness and vascular density in dWAT and dermis. Combination of MSOT and RSOM resolved exercise-induced morphological changes in microvasculature density, tissue oxygen saturation, lipid and blood volume content in dWAT and scWAT. The combination of MSOT and RSOM may allow precise monitoring of microcirculatory dysfunction and intervention response in dWAT and scWAT in a mouse model for DIO. Our findings have laid out the foundation for future clinical studies using optoacoustic-derived vascular readouts from adipose tissues as a biomarker for monitoring microcirculatory function in metabolic disease.

5.
J Control Release ; 372: 522-530, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38897293

RESUMEN

Cyanine derivatives are organic dyes widely used for optical imaging. However, their potential in longitudinal optoacoustic imaging and photothermal therapy remains limited due to challenges such as poor chemical stability, poor photostability, and low photothermal conversion. In this study, we present a new structural modification for cyanine dyes by introducing a strongly electron-withdrawing group (barbiturate), resulting in a new series of barbiturate-cyanine dyes (BC810, BC885, and BC1010) with suppressed fluorescence and enhanced stability. Furthermore, the introduction of BC1010 into block copolymers (PEG114-b-PCL60) induces aggregation-caused quenching, further boosting the photothermal performance. The photophysical properties of nanoparticles (BC1010-NPs) include their remarkably broad absorption range from 900 to 1200 nm for optoacoustic imaging, allowing imaging applications in NIR-I and NIR-II windows. The combined effect of these strategies, including improved photostability, enhanced nonradiative relaxation, and aggregation-caused quenching, enables the detection of optoacoustic signals with high sensitivity and effective photothermal treatment of in vivo tumor models when BC1010-NPs are administered before irradiation with a 1064 nm laser. This research introduces a barbiturate-functionalized cyanine derivative with optimal properties for efficient optoacoustics-guided theranostic applications. This new compound holds significant potential for biomedical use, facilitating advancements in optoacoustic-guided diagnostic and therapeutic approaches.


Asunto(s)
Barbitúricos , Carbocianinas , Nanopartículas , Técnicas Fotoacústicas , Fototerapia , Animales , Técnicas Fotoacústicas/métodos , Carbocianinas/química , Carbocianinas/administración & dosificación , Nanopartículas/química , Barbitúricos/química , Barbitúricos/administración & dosificación , Fototerapia/métodos , Humanos , Ratones Endogámicos BALB C , Femenino , Ratones Desnudos , Línea Celular Tumoral , Colorantes Fluorescentes/química , Colorantes Fluorescentes/administración & dosificación , Ratones , Terapia Fototérmica/métodos , Neoplasias/terapia
6.
Angew Chem Int Ed Engl ; 63(33): e202405636, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38807438

RESUMEN

Optoacoustic (or photoacoustic) imaging promises micron-resolution noninvasive bioimaging with much deeper penetration (>cm) than fluorescence. However, optoacoustic imaging of enzyme activity would require loud, photostable, NIR-absorbing molecular contrast agents, which remain unknown. Most organic molecular contrast agents are repurposed fluorophores, with severe shortcomings of photoinstability or phototoxicity under optoacoustic imaging, as consequences of their slow S1→S0 electronic relaxation. We now report that known fluorophores can be rationally modified to reach ultrafast S1→S0 rates, without much extra molecular complexity, simply by merging them with molecular switches. Here, we merge azobenzene switches with cyanine dyes to give ultrafast relaxation (<10 ps, >100-fold faster). Without even adapting instrument settings, these azohemicyanines display outstanding improvements in signal longevity (>1000-fold increase of photostability) and signal loudness (>3-fold even at time zero). We show why this simple but unexplored design strategy can still offer stronger performance in the future, and can also increase the spatial resolution and the quantitative linearity of photoacoustic response over extended longitudinal imaging. By bringing the world of molecular switches and rotors to bear on problems facing optoacoustic agents, this practical strategy will help to unleash the full potential of optoacoustic imaging in fundamental studies and translational uses.


Asunto(s)
Compuestos Azo , Carbocianinas , Colorantes Fluorescentes , Técnicas Fotoacústicas , Compuestos Azo/química , Técnicas Fotoacústicas/métodos , Colorantes Fluorescentes/química , Carbocianinas/química , Humanos , Rayos Infrarrojos , Estructura Molecular , Imagen Óptica
7.
IEEE Trans Med Imaging ; PP2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38717879

RESUMEN

Fluorescence molecular endoscopy (FME) is emerging as a "red-flag" technique with potential to deliver earlier, faster, and more personalized detection of disease in the gastrointestinal tract, including cancer, and to gain insights into novel drug distribution, dose finding, and response prediction. However, to date, the performance of FME systems is assessed mainly by endoscopists during a procedure, leading to arbitrary, potentially biased, and heavily subjective assessment. This approach significantly affects the repeatability of the procedures and the interpretation or comparison of the acquired data, representing a major bottleneck towards the clinical translation of the technology. Herein, we propose a robust methodology for FME performance assessment and quality control that is based on a novel multi-parametric rigid standard. This standard enables the characterization of an FME system's sensitivity through a single acquisition, performance comparison of multiple systems, and, for the first time, quality control of a system as a function of time and number of usages. We show the photostability of the standard experimentally and demonstrate how it can be used to characterize the performance of an FME system. Moreover, we showcase how the standard can be employed for quality control of a system. In this study, we find that the use of composite fluorescence standards before endoscopic procedures can ensure that an FME system meets the performance criteria and that components prone to performance degradation are replaced in time, avoiding disruption of clinical endoscopy logistics. This will help overcome a major barrier for the translation of FME into the clinics.

8.
Nat Metab ; 6(4): 678-686, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38538980

RESUMEN

Non-invasive glucose monitoring (NIGM) represents an attractive alternative to finger pricking for blood glucose assessment and management of diabetes. Nevertheless, current NIGM techniques do not measure glucose concentrations in blood but rely on indirect bulk measurement of glucose in interstitial fluid, where glucose is diluted and glucose dynamics are different from those in the blood, which impairs NIGM accuracy. Here we introduce a new biosensor, termed depth-gated mid-infrared optoacoustic sensor (DIROS), which allows, for the first time, non-invasive glucose detection in blood-rich volumes in the skin. DIROS minimizes interference caused by the stratum corneum and other superficial skin layers by time-gating mid-infrared optoacoustic signals to enable depth-selective localization of glucose readings in skin. In measurements on the ears of (female) mice, DIROS displays improved accuracy over bulk-tissue glucose measurements. Our work demonstrates how signal localization can improve NIGM accuracy and positions DIROS as a holistic approach, with high translational potential, that addresses a key limitation of current NIGM methods.


Asunto(s)
Glucemia , Técnicas Fotoacústicas , Animales , Glucemia/análisis , Glucemia/metabolismo , Ratones , Técnicas Fotoacústicas/métodos , Técnicas Biosensibles/métodos , Femenino , Piel/metabolismo , Rayos Infrarrojos , Humanos
9.
Photoacoustics ; 35: 100582, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38312808

RESUMEN

Optoacoustic (photoacoustic) mesoscopy bridges the gap between optoacoustic microscopy and macroscopy and enables high-resolution visualization deeper than optical microscopy. Nevertheless, as images may be affected by motion and noise, it is critical to develop methodologies that offer standardization and quality control to ensure that high-quality datasets are reproducibly obtained from patient scans. Such development is particularly important for ensuring reliability in applying machine learning methods or for reliably measuring disease biomarkers. We propose herein a quality control scheme to assess the quality of data collected. A reference scan of a suture phantom is performed to characterize the system noise level before each raster-scan optoacoustic mesoscopy (RSOM) measurement. Using the recorded RSOM data, we develop a method that estimates the amount of motion in the raw data. These motion metrics are employed to classify the quality of raw data collected and derive a quality assessment index (QASIN) for each raw measurement. Using simulations, we propose a selection criterion of images with sufficient QASIN, leading to the compilation of RSOM datasets with consistent quality. Using 160 RSOM measurements from healthy volunteers, we show that RSOM images that were selected using QASIN were of higher quality and fidelity compared to non-selected images. We discuss how this quality control scheme can enable the standardization of RSOM images for clinical and biomedical applications.

10.
J Exp Clin Cancer Res ; 43(1): 53, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38383387

RESUMEN

BACKGROUND: Esophageal cancer is one of the 10 most common cancers worldwide and its incidence is dramatically increasing. Despite some improvements, the current surveillance protocol with white light endoscopy and random untargeted biopsies collection (Seattle protocol) fails to diagnose dysplastic and cancerous lesions in up to 50% of patients. Therefore, new endoscopic imaging technologies in combination with tumor-specific molecular probes are needed to improve early detection. Herein, we investigated the use of the fluorescent Poly (ADP-ribose) Polymerase 1 (PARP1)-inhibitor PARPi-FL for early detection of dysplastic lesions in patient-derived organoids and transgenic mouse models, which closely mimic the transformation from non-malignant Barrett's Esophagus (BE) to invasive esophageal adenocarcinoma (EAC). METHODS: We determined PARP1 expression via immunohistochemistry (IHC) in human biospecimens and mouse tissues. We also assessed PARPi-FL uptake in patient- and mouse-derived organoids. Following intravenous injection of 75 nmol PARPi-FL/mouse in L2-IL1B (n = 4) and L2-IL1B/IL8Tg mice (n = 12), we conducted fluorescence molecular endoscopy (FME) and/or imaged whole excised stomachs to assess PARPi-FL accumulation in dysplastic lesions. L2-IL1B/IL8Tg mice (n = 3) and wild-type (WT) mice (n = 2) without PARPi-FL injection served as controls. The imaging results were validated by confocal microscopy and IHC of excised tissues. RESULTS: IHC on patient and murine tissue revealed similar patterns of increasing PARP1 expression in presence of dysplasia and cancer. In human and murine organoids, PARPi-FL localized to PARP1-expressing epithelial cell nuclei after 10 min of incubation. Injection of PARPi-FL in transgenic mouse models of BE resulted in the successful detection of lesions via FME, with a mean target-to-background ratio > 2 independently from the disease stage. The localization of PARPi-FL in the lesions was confirmed by imaging of the excised stomachs and confocal microscopy. Without PARPi-FL injection, identification of lesions via FME in transgenic mice was not possible. CONCLUSION: PARPi-FL imaging is a promising approach for clinically needed improved detection of dysplastic and malignant EAC lesions in patients with BE. Since PARPi-FL is currently evaluated in a phase 2 clinical trial for oral cancer detection after topical application, clinical translation for early detection of dysplasia and EAC in BE patients via FME screening appears feasible.


Asunto(s)
Adenocarcinoma , Esófago de Barrett , Neoplasias Esofágicas , Humanos , Ratones , Animales , Detección Precoz del Cáncer , Neoplasias Esofágicas/diagnóstico por imagen , Neoplasias Esofágicas/genética , Esófago de Barrett/diagnóstico , Esófago de Barrett/genética , Esófago de Barrett/patología , Adenocarcinoma/diagnóstico por imagen , Adenocarcinoma/genética , Ratones Transgénicos , Endoscopía , Poli(ADP-Ribosa) Polimerasa-1/genética
11.
Sci Adv ; 10(8): eadj7944, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38381817

RESUMEN

Rapid live-cell hyperspectral imaging at large fields of view (FOVs) and high cell confluency remains challenging for conventional vibrational spectroscopy-based microscopy technologies. At the same time, imaging at high cell confluency and large FOVs is important for proper cell function and statistical significance of measurements, respectively. Here, we introduce phase-shifting mid-infrared optothermal microscopy (PSOM), which interprets molecular-vibrational information as the optical path difference induced by mid-infrared absorption and can take snapshot vibrational images over broad excitation areas at high live-cell confluency. By means of phase-shifting, PSOM suppresses noise to a quarter of current optothermal microscopy modalities to allow capturing live-cell vibrational images at FOVs up to 50 times larger than state of the art. PSOM also reduces illumination power flux density (PFD) down to four orders of magnitude lower than other conventional vibrational microscopy methods, such as coherent anti-Stokes Raman scattering (CARS), thus considerably decreasing the risk of cell photodamage.


Asunto(s)
Imágenes Hiperespectrales , Microscopía , Microscopía/métodos , Espectrometría Raman/métodos , Vibración
12.
IEEE Trans Med Imaging ; 43(6): 2074-2085, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38241120

RESUMEN

Ultra-wideband raster-scan optoacoustic mesoscopy (RSOM) is a novel modality that has demonstrated unprecedented ability to visualize epidermal and dermal structures in-vivo. However, an automatic and quantitative analysis of three-dimensional RSOM datasets remains unexplored. In this work we present our framework: Deep Learning RSOM Analysis Pipeline (DeepRAP), to analyze and quantify morphological skin features recorded by RSOM and extract imaging biomarkers for disease characterization. DeepRAP uses a multi-network segmentation strategy based on convolutional neural networks with transfer learning. This strategy enabled the automatic recognition of skin layers and subsequent segmentation of dermal microvasculature with an accuracy equivalent to human assessment. DeepRAP was validated against manual segmentation on 25 psoriasis patients under treatment and our biomarker extraction was shown to characterize disease severity and progression well with a strong correlation to physician evaluation and histology. In a unique validation experiment, we applied DeepRAP in a time series sequence of occlusion-induced hyperemia from 10 healthy volunteers. We observe how the biomarkers decrease and recover during the occlusion and release process, demonstrating accurate performance and reproducibility of DeepRAP. Furthermore, we analyzed a cohort of 75 volunteers and defined a relationship between aging and microvascular features in-vivo. More precisely, this study revealed that fine microvascular features in the dermal layer have the strongest correlation to age. The ability of our newly developed framework to enable the rapid study of human skin morphology and microvasculature in-vivo promises to replace biopsy studies, increasing the translational potential of RSOM.


Asunto(s)
Biomarcadores , Técnicas Fotoacústicas , Psoriasis , Piel , Humanos , Psoriasis/diagnóstico por imagen , Técnicas Fotoacústicas/métodos , Piel/diagnóstico por imagen , Piel/irrigación sanguínea , Aprendizaje Profundo , Aprendizaje Automático , Adulto , Envejecimiento de la Piel/fisiología , Femenino , Persona de Mediana Edad , Masculino
13.
Med Phys ; 51(2): 740-771, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38054538

RESUMEN

The last decade has seen a large growth in fluorescence-guided surgery (FGS) imaging and interventions. With the increasing number of clinical specialties implementing FGS, the range of systems with radically different physical designs, image processing approaches, and performance requirements is expanding. This variety of systems makes it nearly impossible to specify uniform performance goals, yet at the same time, utilization of different devices in new clinical procedures and trials indicates some need for common knowledge bases and a quality assessment paradigm to ensure that effective translation and use occurs. It is feasible to identify key fundamental image quality characteristics and corresponding objective test methods that should be determined such that there are consistent conventions across a variety of FGS devices. This report outlines test methods, tissue simulating phantoms and suggested guidelines, as well as personnel needs and professional knowledge bases that can be established. This report frames the issues with guidance and feedback from related societies and agencies having vested interest in the outcome, coming from an independent scientific group formed from academics and international federal agencies for the establishment of these professional guidelines.


Asunto(s)
Diagnóstico por Imagen , Procesamiento de Imagen Asistido por Computador , Fluorescencia , Fantasmas de Imagen
14.
Nat Biomed Eng ; 7(12): 1667-1682, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38049470

RESUMEN

Skin microangiopathy has been associated with diabetes. Here we show that skin-microangiopathy phenotypes in humans can be correlated with diabetes stage via morphophysiological cutaneous features extracted from raster-scan optoacoustic mesoscopy (RSOM) images of skin on the leg. We obtained 199 RSOM images from 115 participants (40 healthy and 75 with diabetes), and used machine learning to segment skin layers and microvasculature to identify clinically explainable features pertaining to different depths and scales of detail that provided the highest predictive power. Features in the dermal layer at the scale of detail of 0.1-1 mm (such as the number of junction-to-junction branches) were highly sensitive to diabetes stage. A 'microangiopathy score' compiling the 32 most-relevant features predicted the presence of diabetes with an area under the receiver operating characteristic curve of 0.84. The analysis of morphophysiological cutaneous features via RSOM may allow for the discovery of diabetes biomarkers in the skin and for the monitoring of diabetes status.


Asunto(s)
Diabetes Mellitus , Técnicas Fotoacústicas , Humanos , Técnicas Fotoacústicas/métodos , Piel/diagnóstico por imagen , Piel/irrigación sanguínea , Aprendizaje Automático , Fenotipo
15.
Front Cardiovasc Med ; 10: 1210032, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38028502

RESUMEN

Imaging plays a critical role in exploring the pathophysiology and enabling the diagnostics and therapy assessment in carotid artery disease. Ultrasonography, computed tomography, magnetic resonance imaging and nuclear medicine techniques have been used to extract of known characteristics of plaque vulnerability, such as inflammation, intraplaque hemorrhage and high lipid content. Despite the plethora of available techniques, there is still a need for new modalities to better characterize the plaque and provide novel biomarkers that might help to detect the vulnerable plaque early enough and before a stroke occurs. Optoacoustics, by providing a multiscale characterization of the morphology and pathophysiology of the plaque could offer such an option. By visualizing endogenous (e.g., hemoglobin, lipids) and exogenous (e.g., injected dyes) chromophores, optoacoustic technologies have shown great capability in imaging lipids, hemoglobin and inflammation in different applications and settings. Herein, we provide an overview of the main optoacoustic systems and scales of detail that enable imaging of carotid plaques in vitro, in small animals and humans. Finally, we discuss the limitations of this novel set of techniques while investigating their potential to enable a deeper understanding of carotid plaque pathophysiology and possibly improve the diagnostics in future patients with carotid artery disease.

16.
Sci Rep ; 13(1): 19542, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37945920

RESUMEN

Laser diodes are small and inexpensive but don't afford the pulse energy and beam profile required for optoacoustic (photoacoustic) microscopy. Using two novel modulation concepts, i.e. overdriving continuous-wave laser diodes (CWLD) and frequency-wavelength multiplexing (FWM) based on illumination pulse-trains, we demonstrate concurrent multi-wavelength optoacoustic microscopy with signal-to-noise ratios of > 17 dB, < 2 µm resolution at repetition rates of 1 MHz. This unprecedented performance based on an adaptable trigger engine allowed us to contrast FWM to wavelength alternating acquisition using identical optical components. We showcase this concept's superiority over conventional optoacoustic microscopes by visualizing vascular oxygenation dynamics and circulating tumor cells in mice. This work positions laser diodes as a technology allowing affordable, tunable, and miniaturizable optoacoustic microscopy.

17.
Biomed Opt Express ; 14(10): 5499-5511, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37854563

RESUMEN

The total diffuse reflectance RT and the effective attenuation coefficient µeff of an optically diffuse medium map uniquely onto its absorption and reduced scattering coefficients. Using this premise, we developed a methodology where RT and the slope of the logarithmic spatially resolved reflectance, a quantity related to µeff, are the inputs of a look-up table to correct the dependence of fluorescent signals on the media's optical properties. This methodology does not require an estimation of the medium's optical property, avoiding elaborate simulations and their errors to offer accurate and fast corrections. The experimental demonstration of our method yielded a mean relative error in fluorophore concentrations of less than 4% over a wide range of optical property variations. We discuss how the method developed can be employed to improve image fidelity and fluorochrome quantification in fluorescence molecular imaging clinical applications.

18.
Lancet Diabetes Endocrinol ; 11(11): 798-810, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37769677

RESUMEN

BACKGROUND: Remission of type 2 diabetes can occur as a result of weight loss and is characterised by liver fat and pancreas fat reduction and recovered insulin secretion. In this analysis, we aimed to investigate the mechanisms of weight loss- induced remission in people with prediabetes. METHODS: In this prespecified post-hoc analysis, weight loss-induced resolution of prediabetes in the randomised, controlled, multicentre Prediabetes Lifestyle Intervention Study (PLIS) was assessed, and the results were validated against participants from the Diabetes Prevention Program (DPP) study. For PLIS, between March 1, 2012, and Aug 31, 2016, participants were recruited from eight clinical study centres (including seven university hospitals) in Germany and randomly assigned to receive either a control intervention, a standard lifestyle intervention (ie, DPP-based intervention), or an intensified lifestyle intervention for 12 months. For DPP, participants were recruited from 23 clinical study centres in the USA between July 31, 1996, and May 18, 1999, and randomly assigned to receive either a standard lifestyle intervention, metformin, or placebo. In both PLIS and DPP, only participants who were randomly assigned to receive lifestyle intervention or placebo and who lost at least 5% of their bodyweight were included in this analysis. Responders were defined as people who returned to normal fasting plasma glucose (FPG; <5·6 mmol/L), normal glucose tolerance (<7·8 mmol/L), and HbA1c less than 39 mmol/mol after 12 months of lifestyle intervention or placebo or control intervention. Non-responders were defined as people who had FPG, 2 h glucose, or HbA1c more than these thresholds. The main outcomes for this analysis were insulin sensitivity, insulin secretion, visceral adipose tissue (VAT), and intrahepatic lipid content (IHL) and were evaluated via linear mixed models. FINDINGS: Of 1160 participants recruited to PLIS, 298 (25·7%) had weight loss of 5% or more of their bodyweight at baseline. 128 (43%) of 298 participants were responders and 170 (57%) were non-responders. Responders were younger than non-responders (mean age 55·6 years [SD 9·9] vs 60·4 years [8·6]; p<0·0001). The DPP validation cohort included 683 participants who lost at least 5% of their bodyweight at baseline. Of these, 132 (19%) were responders and 551 (81%) were non-responders. In PLIS, BMI reduction was similar between responders and non-responders (responders mean at baseline 32·4 kg/m2 [SD 5·6] to mean at 12 months 29·0 kg/m2 [4·9] vs non-responders 32·1 kg/m2 [5·9] to 29·2 kg/m2 [5·4]; p=0·86). However, whole-body insulin sensitivity increased more in responders than in non-responders (mean at baseline 291 mL/[min × m2], SD 60 to mean at 12 months 378 mL/[min × m2], 56 vs 278 mL/[min × m2], 62, to 323 mL/[min × m2], 66; p<0·0001), whereas insulin secretion did not differ within groups over time or between groups (responders mean at baseline 175 pmol/mmol [SD 64] to mean at 12 months 163·7 pmol/mmol [60·6] vs non-responders 158·0 pmol/mmol [55·6] to 154·1 pmol/mmol [56·2]; p=0·46). IHL decreased in both groups, without a difference between groups (responders mean at baseline 10·1% [SD 8·7] to mean at 12 months 3·5% [3·9] vs non-responders 10·3% [8·1] to 4·2% [4·2]; p=0·34); however, VAT decreased more in responders than in non-responders (mean at baseline 6·2 L [SD 2·9] to mean at 12 months 4·1 L [2·3] vs 5·7 L [2·3] to 4·5 L [2·2]; p=0·0003). Responders had a 73% lower risk of developing type 2 diabetes than non-responders in the 2 years after the intervention ended. INTERPRETATION: By contrast to remission of type 2 diabetes, resolution of prediabetes was characterised by an improvement in insulin sensitivity and reduced VAT. Because return to normal glucose regulation (NGR) prevents development of type 2 diabetes, we propose the concept of remission of prediabetes in analogy to type 2 diabetes. We suggest that remission of prediabetes should be the primary therapeutic aim in individuals with prediabetes. FUNDING: German Federal Ministry for Education and Research via the German Center for Diabetes Research; the Ministry of Science, Research and the Arts Baden-Württemberg; the Helmholtz Association and Helmholtz Munich; the Cluster of Excellence Controlling Microbes to Fight Infections; and the German Research Foundation.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Estado Prediabético , Humanos , Persona de Mediana Edad , Diabetes Mellitus Tipo 2/prevención & control , Pérdida de Peso , Peso Corporal , Glucosa , Estilo de Vida
19.
Light Sci Appl ; 12(1): 231, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37718348

RESUMEN

Being the largest and most accessible organ of the human body, the skin could offer a window to diabetes-related complications on the microvasculature. However, skin microvasculature is typically assessed by histological analysis, which is not suited for applications to large populations or longitudinal studies. We introduce ultra-wideband raster-scan optoacoustic mesoscopy (RSOM) for precise, non-invasive assessment of diabetes-related changes in the dermal microvasculature and skin micro-anatomy, resolved with unprecedented sensitivity and detail without the need for contrast agents. Providing unique imaging contrast, we explored a possible role for RSOM as an investigational tool in diabetes healthcare and offer the first comprehensive study investigating the relationship between different diabetes complications and microvascular features in vivo. We applied RSOM to scan the pretibial area of 95 participants with diabetes mellitus and 48 age-matched volunteers without diabetes, grouped according to disease complications, and extracted six label-free optoacoustic biomarkers of human skin, including dermal microvasculature density and epidermal parameters, based on a novel image-processing pipeline. We then correlated these biomarkers to disease severity and found statistically significant effects on microvasculature parameters as a function of diabetes complications. We discuss how label-free RSOM biomarkers can lead to a quantitative assessment of the systemic effects of diabetes and its complications, complementing the qualitative assessment allowed by current clinical metrics, possibly leading to a precise scoring system that captures the gradual evolution of the disease.

20.
J Cardiovasc Dev Dis ; 10(9)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37754812

RESUMEN

Microvascular changes in diabetes affect the function of several critical organs, such as the kidneys, heart, brain, eye, and skin, among others. The possibility of detecting such changes early enough in order to take appropriate actions renders the development of appropriate tools and techniques an imperative need. To this end, several sensing and imaging techniques have been developed or employed in the assessment of microangiopathy in patients with diabetes. Herein, we present such techniques; we provide insights into their principles of operation while discussing the characteristics that make them appropriate for such use. Finally, apart from already established techniques, we present novel ones with great translational potential, such as optoacoustic technologies, which are expected to enter clinical practice in the foreseeable future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA