Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39125651

RESUMEN

Myocardial damage significantly impacts the prognosis of patients with cancer; however, the mechanisms of myocardial damage induced by cancer and its treatment remain unknown. We previously reported that medium-chain fatty acids (MCFAs) improve cancer-induced myocardial damage but did not evaluate the differences in effect according to MCFA type. Therefore, this study investigated the role of inflammatory cytokines in cancer-induced myocardial damage and the effects of three types of MCFAs (caprylic acid [C8], capric acid [C10], and lauric acid [C12]). In a mouse model, the C8 diet showed a greater effect on improving myocardial damage compared with C10 and C12 diets. Myocardial tubes differentiated from H9C2 cardiomyoblasts demonstrated increased mitochondrial oxidative stress, decreased membrane potential and mitochondrial volume, and inhibited myocardial tube differentiation following treatment with high-mobility group box-1 (HMGB1) but not interleukin-6 and tumor necrosis factor-α cytokines. However, HMGB1 treatment combined with C8 improved HMGB1-induced mitochondrial damage, enhanced autophagy, and increased mitochondrial biogenesis and maturation. However, these effects were only partial when combined with beta-hydroxybutyrate, a C8 metabolite. Thus, HMGB1 may play an important role in cancer-related myocardial damage. C8 counteracts HMGB1's effects and improves cancer-related myocardial damage. Further clinical studies are required to investigate the effects of C8.


Asunto(s)
Caprilatos , Proteína HMGB1 , Animales , Proteína HMGB1/metabolismo , Ratones , Caprilatos/farmacología , Estrés Oxidativo/efectos de los fármacos , Miocardio/metabolismo , Miocardio/patología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Masculino , Ácidos Láuricos/farmacología , Línea Celular , Citocinas/metabolismo , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Ácidos Decanoicos/farmacología , Ácido 3-Hidroxibutírico/farmacología , Autofagia/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones Endogámicos C57BL
2.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39000167

RESUMEN

Skeletal muscle aging and sarcopenia result in similar changes in the levels of aging markers. However, few studies have examined cancer sarcopenia from the perspective of aging. Therefore, this study investigated aging in cancer sarcopenia and explored its causes in vitro and in vivo. In mouse aging, in vitro cachexia, and mouse cachexia models, skeletal muscles showed similar changes in aging markers including oxidative stress, fibrosis, reduced muscle differentiation potential, and telomere shortening. Furthermore, examination of mitochondrial DNA from skeletal muscle revealed a 5 kb deletion in the major arc; truncation of complexes I, IV, and V in the electron transport chain; and reduced oxidative phosphorylation (OXPHOS). The mouse cachexia model demonstrated high levels of high-mobility group box-1 (HMGB1) and tumor necrosis factor-α (TNFα) in cancer ascites. Continuous administration of neutralizing antibodies against HMGB1 and TNFα in this model reduced oxidative stress and abrogated mitochondrial DNA deletion. These results suggest that in cancer sarcopenia, mitochondrial oxidative stress caused by inflammatory cytokines leads to mitochondrial DNA damage, which in turn leads to decreased OXPHOS and the promotion of aging.


Asunto(s)
Envejecimiento , Daño del ADN , ADN Mitocondrial , Proteína HMGB1 , Músculo Esquelético , Estrés Oxidativo , Sarcopenia , Animales , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Ratones , Envejecimiento/metabolismo , Envejecimiento/genética , Sarcopenia/metabolismo , Sarcopenia/patología , Sarcopenia/genética , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/genética , Caquexia/metabolismo , Caquexia/patología , Caquexia/genética , Caquexia/etiología , Fosforilación Oxidativa , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patología , Masculino , Ratones Endogámicos C57BL
3.
Antioxidants (Basel) ; 13(7)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39061890

RESUMEN

Nutritional interventions are one focus of sarcopenia treatment. As medium-chain fatty acids (MCFAs) are oxidized in the mitochondria and produce energy through oxidative phosphorylation (OXPHOS), they are key parts of nutritional interventions. We investigated the in vitro effects of three types of MCFA, caprylic acid (C8), capric acid (C10), and lauric acid (C12), in skeletal muscle cells. Compared with C10 and C12, C8 promoted mitophagy through the phosphatase and tensin homolog (PTEN)-induced kinase 1-Parkin pathway and increased the expression of peroxisome proliferator-activated receptor gamma coactivator 1-α and dynamin-related protein 1 to reduce mitochondrial oxidative stress and promote OXPHOS. Furthermore, the expression of myogenic differentiation 1 and myosin heavy chain increased in myotubes, thus promoting muscle differentiation and maturation. These results suggest that C8 improves mitochondrial quality and promotes skeletal muscle maturation; in contrast, C10 and C12 poorly promoted mitochondrial quality control and oxidative stress and suppressed energy production. Future animal experiments are required to establish the usefulness of C8 for nutritional interventions for sarcopenia.

4.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731953

RESUMEN

Cardiac disorders in cancer patients pose significant challenges to disease prognosis. While it has been established that these disorders are linked to cancer cells, the precise underlying mechanisms remain elusive. In this study, we investigated the impact of cancerous ascites from the rat colonic carcinoma cell line RCN9 on H9c2 cardiomyoblast cells. We found that the ascites reduced mitochondrial volume, increased oxidative stress, and decreased membrane potential in the cardiomyoblast cells, leading to apoptosis and autophagy. Although the ascites fluid contained a substantial amount of high-mobility group box-1 (HMGB1), we observed that neutralizing HMGB1 with a specific antibody mitigated the damage inflicted on myocardial cells. Our mechanistic investigations revealed that HMGB1 activated both nuclear factor κB and phosphoinositide 3-kinases-AKT signals through HMGB1 receptors, namely the receptor for advanced glycation end products and toll-like receptor-4, thereby promoting apoptosis and autophagy. In contrast, treatment with berberine (BBR) induced the expression of miR-181c-5p and miR-340-5p while suppressing HMGB1 expression in RCN9 cells. Furthermore, BBR reduced HMGB1 receptor expression in cardiomyocytes, consequently mitigating HMGB1-induced damage. We validated the myocardial protective effects of BBR in a cachectic rat model. These findings underscore the strong association between HMGB1 and cancer cachexia, highlighting BBR as a promising therapeutic agent for myocardial protection through HMGB1 suppression and modulation of the signaling system.


Asunto(s)
Berberina , Caquexia , Proteína HMGB1 , Animales , Ratas , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Berberina/farmacología , Caquexia/metabolismo , Caquexia/tratamiento farmacológico , Caquexia/etiología , Caquexia/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Proteína HMGB1/efectos de los fármacos , Proteína HMGB1/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Neoplasias/metabolismo , Neoplasias/complicaciones , Neoplasias/tratamiento farmacológico , Neoplasias/patología , FN-kappa B/metabolismo , Estrés Oxidativo/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 4/metabolismo
5.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38473857

RESUMEN

Anticancer agents are playing an increasing role in the treatment of gastric cancer (GC); however, novel anticancer agents have not been fully developed. Therefore, it is important to investigate compounds that improve sensitivity to the existing anticancer drugs. We have reported that pterostilbene (PTE), a plant stilbene, enhances the antitumor effect of low doses of sunitinib in gastric cancer cells accumulating mitochondrial iron (II) (mtFe) at low doses. In this study, we investigated the relationship between the mtFe deposition and the synergistic effect of PTE and different anticancer drugs. For this study, we used 5-fluorouracil (5FU), cisplatin (CPPD), and lapatinib (LAP), which are frequently used in the treatment of GC, and doxorubicin (DOX), which is known to deposit mtFe. A combination of low-dose PTE and these drugs suppressed the expression of PDZ domain-containing 8 (PDZD8) and increased mtFe accumulation and mitochondrial H2O2. Consequently, reactive oxygen species-associated hypoxia inducible factor-1α activation induced endoplasmic reticulum stress and led to apoptosis, but not ferroptosis. In contrast, 5FU and CDDP did not show the same changes as those observed with PTE and DOX or LAP, and there was no synergistic effect with PTE. These results indicate that the combination of PTE with iron-accumulating anticancer drugs exhibits a strong synergistic effect. These findings would help in developing novel therapeutic strategies for GC. However, further clinical investigations are required.


Asunto(s)
Antineoplásicos , Estilbenos , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/patología , Peróxido de Hidrógeno/metabolismo , Antineoplásicos/farmacología , Fluorouracilo/farmacología , Especies Reactivas de Oxígeno/metabolismo , Cisplatino/farmacología , Doxorrubicina/farmacología , Apoptosis , Mitocondrias/metabolismo , Estilbenos/farmacología , Estrés del Retículo Endoplásmico , Línea Celular Tumoral , Proteínas Adaptadoras Transductoras de Señales/metabolismo
6.
Int J Mol Sci ; 25(5)2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38474261

RESUMEN

Patients with cancer die from cardiac dysfunction second only to the disease itself. Cardiotoxicity caused by anticancer drugs has been emphasized as a possible cause; however, the details remain unclear. To investigate this mechanism, we treated rat cardiomyoblast H9c2 cells with sunitinib, lapatinib, 5-fluorouracil, and cisplatin to examine their effects. All anticancer drugs increased ROS, lipid peroxide, and iron (II) levels in the mitochondria and decreased glutathione peroxidase-4 levels and the GSH/GSSG ratio. Against this background, mitochondrial iron (II) accumulates through the unregulated expression of haem oxygenase-1 and ferrochelatase. Anticancer-drug-induced cell death was suppressed by N-acetylcysteine, deferoxamine, and ferrostatin, indicating ferroptosis. Anticancer drug treatment impairs mitochondrial DNA and inhibits oxidative phosphorylation in H9c2 cells. Similar results were observed in the hearts of cancer-free rats treated with anticancer drugs in vitro. In contrast, treatment with pterostilbene inhibited the induction of ferroptosis and rescued the energy restriction induced by anticancer drugs both in vitro and in vivo. These findings suggest that induction of ferroptosis and inhibition of oxidative phosphorylation are mechanisms by which anticancer drugs cause myocardial damage. As pterostilbene ameliorates these mechanisms, it is expected to have significant clinical applications.


Asunto(s)
Antineoplásicos , Ferroptosis , Humanos , Ratas , Animales , Fosforilación Oxidativa , Antineoplásicos/farmacología , Muerte Celular , Hierro/metabolismo
8.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37047157

RESUMEN

5-aminolevulinic acid (ALA) is used for tumor-targeting phototherapy because it is converted to protoporphyrin IX (PPIX) upon excitation and induces phototoxicity. However, the effect of ALA on malignant cells under unexcited conditions is unclear. This information is essential when administering ALA systemically. We used sarcoma cell lines that usually arise deep in the body and are rarely exposed to light to examine the effects of ALA treatment under light (daylight lamp irradiation) and dark (dark room) conditions. ALA-treated human SW872 liposarcoma cells and human MG63 osteosarcoma cells cultured under light exhibited growth suppression and increased oxidative stress, while cells cultured in the dark showed no change. However, sphere-forming ability increased in the dark, and the expression of stem-cell-related genes was induced in dark, but not light, conditions. ALA administration increased heme oxygenase 1 (HO-1) expression in both cell types; when carbon monoxide (CO), a metabolite of HO-1, was administered to sarcoma cells via carbon-monoxide-releasing molecule 2 (CORM2), it enhanced sphere-forming ability. We also compared the concentration of biliverdin (BVD) (a co-product of HO-1 activity alongside CO) with sphere-forming ability when HO-1 activity was inhibited using ZnPPIX in the dark. Both cell types showed a peak in sphere-forming ability at 60-80 µM BVD. Furthermore, a cell death inhibitor assay revealed that the HO-1-induced suppression of sphere formation was rescued by apoptosis or ferroptosis inhibitors. These findings suggest that in the absence of excitation, ALA promotes HO-1 expression and enhances the stemness of sarcoma cells, although excessive HO-1 upregulation induces apoptosis and ferroptosis. Our data indicate that systemic ALA administration induces both enhanced stemness and cell death in malignant cells located in dark environments deep in the body and highlight the need to pay attention to drug delivery and ALA concentrations during phototherapy.


Asunto(s)
Ácido Aminolevulínico , Sarcoma , Humanos , Línea Celular , Ácido Aminolevulínico/farmacología , Ácido Aminolevulínico/uso terapéutico , Apoptosis , Muerte Celular , Sarcoma/tratamiento farmacológico , Hemo-Oxigenasa 1/metabolismo , Protoporfirinas/farmacología
9.
Int J Mol Sci ; 24(7)2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37047563

RESUMEN

Berberine (BBR) is a plant alkaloid that has various biological activities. The effects of BBR on gastrointestinal cancer (GIC) have also been investigated and anti-tumor effects such as induction of cell death have been reported. However, the mechanism of BBR-induced cell death has not been fully elucidated. To this end, we investigated the effects of BBR using three GIC cell lines. Our analyses revealed that BBR inhibited cell proliferation, invasion, sphere formation, and anticancer drug resistance in all of the cell lines. BBR also induced an increase in mitochondrial superoxide, lipid peroxide and Fe2+ levels, decreased mitochondrial membrane potential and respiration, decreased glutathione peroxidase 4 expression and glutathione and induced Parkin/PINK1-associated mitophagy. BBR, as well as rotenone, inhibited mitochondrial complex I and enhanced complex II, which were associated with autophagy, reactive oxidative species production, and cell death. Inhibition of complex II by malonate abrogated these changes. BBR-induced cell death was partially rescued by ferrostatin-1, deferoxamine, Z-VAD-FMK, and ATG5 knockdown. Furthermore, oral administration of BBR significantly reduced tumor weight and ascites in a syngeneic mouse peritoneal metastasis model using CT26 GIC cells. These findings suggest that BBR induced a combined type of cell death via complex I inhibition and autophagy. The marked anti-tumor and anti-stemness effects are expected to be useful as a new cell death-inducing agent for the treatment of GIC.


Asunto(s)
Berberina , Ratones , Animales , Berberina/farmacología , Berberina/uso terapéutico , Muerte Celular , Línea Celular , Autofagia , Mitofagia , Apoptosis
10.
Oncotarget ; 11(41): 3712-3722, 2020 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-33110478

RESUMEN

Myocardial damage in cancer patients is emphasized as a cause of death; however, there are not many murine cachexia models to evaluate cancer-derived heart disorder. Using the mouse cachexia model that we established previously, we investigated myocardial damage in tumor-bearing mice. In cachexic mice, decreased heart weight and myocardial volume, and dilated left ventricular lumen, and atrophied cardiomyocytes were noted. The cardiomyocytes also showed accumulated 8-hydroxydeoxyguanosine, decreased leucine zipper and EF-hand-containing transmembrane protein-1, and increased microtubule-associated protein light chain3-II. Levels of tumor necrosis factor-α and high-mobility group box-1 proteins in the myocardium were increased, and nuclear factor κB, a signaling molecule associated with these proteins, was activated. When rat cardiomyoblasts (H9c2 cells) were treated with mouse cachexia model ascites and subjected to flux analysis, both oxidative phosphorylation and glycolysis were suppressed, and the cells were in a quiescent state. These results are in good agreement with those previously reported on cancerous myocardial damage. The established mouse cachexia model can therefore be considered useful for analyzing cancer-derived myocardial damage.

11.
Cancer Sci ; 111(12): 4605-4615, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32969559

RESUMEN

Cancer-derived myocardial damage is an important cause of death in cancer patients. However, the development of dietary interventions for treating such damage has not been advanced. Here, we investigated the effect of dietary intervention with lauric acid (LAA) and glucose, which was effective against skeletal muscle sarcopenia in a mouse cachexia model, on myocardial damage. Treatment of H9c2 rat cardiomyoblasts with lauric acid promoted mitochondrial respiration and increased ATP production by Seahorse flux analysis, but did not increase oxidative stress. Glycolysis was also promoted by LAA. In contrast, mitochondrial respiration and ATP production were suppressed, and oxidative stress was increased in an in vitro cachexia model in which cardiomyoblasts were treated with mouse cachexia ascites. Ascites-treated H9c2 cells with concurrent treatment with LAA and high glucose showed that mitochondrial respiration and glycolysis were promoted more than that of the control, and ATP was restored to the level of the control. Oxidative stress was also reduced by the combined treatment. In the mouse cachexia model, myocardiac atrophy and decreased levels of a marker of muscle maturity, SDS-soluble MYL1, were observed. When LAA in CE-2 diet was orally administered alone, no significant rescue was observed in the cancer-derived myocardial disorder. In contrast, combined oral administration of LAA and glucose recovered myocardial atrophy and MYL1 to levels observed in the control without increase in the cancer weight. Therefore, it is suggested that dietary intervention using a combination of LAA and glucose for cancer cachexia might improve cancer-derived myocardial damage.


Asunto(s)
Caquexia/dietoterapia , Glucosa/farmacología , Ácidos Láuricos/farmacología , Atrofia Muscular/dietoterapia , Miocitos Cardíacos/efectos de los fármacos , Adenosina Trifosfato/biosíntesis , Animales , Caquexia/complicaciones , Caquexia/patología , Línea Celular , Línea Celular Tumoral , Metabolismo Energético/efectos de los fármacos , Glucosa/administración & dosificación , Glucólisis/efectos de los fármacos , Ácidos Láuricos/administración & dosificación , Masculino , Ratones , Ratones Endogámicos BALB C , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Atrofia Muscular/etiología , Atrofia Muscular/patología , Estrés Oxidativo/efectos de los fármacos , Proteína de la Leucemia Promielocítica/metabolismo , Sarcopenia/dietoterapia , Sarcopenia/etiología , Sarcopenia/patología
12.
Pathobiology ; 86(5-6): 306-314, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31707381

RESUMEN

Cachexia frequently occurs in cancer patients and is correlated with reduced therapeutic responsiveness and poor prognosis. Although skeletal muscle atrophy is an important factor related to cachexia, biomarkers for its early diagnosis are not yet definitive. In this study, weight loss, body mass index, skeletal muscle index (SMI), serum carcinoembryonic antigen, serum tumor necrosis factor (TNF)-α, serum interleukin (IL)-6, serum high mobility group box (HMGB)-1, and SDS-soluble myosin light chain 1 (SDS-MYL1) of the psoas muscle were examined in 8 autopsied cases of death from colorectal cancer (CRC) as biomarkers of cachexia. SDS-MYL1 was positively correlated to SMI and TNF-α was negatively correlated, but the other factors did not show any correlations with SMI. Multivariate analysis showed that of the 3 cytokines, TNF-α and HMGB1 were correlated with SMI. Furthermore, when the biochemical skeletal muscle maturation marker, SDS-MYL1, was compared with serum cytokines, TNF-α and HMGB1 were negatively correlated but IL-6 was not. In multivariate analysis, only TNF-α was associated with SDS-MYL1. A positive correlation was found between TNF-α and HMGB1. These findings suggest that since TNF-α was inversely correlated with SMI and SDS-MYL1, TNF-α is a serum marker of skeletal muscle atrophy in CRC. Moreover, SDS-MYL1 might be established as a biomarker linked to clinical sarcopenia in experiments in vitro and in vivo.


Asunto(s)
Caquexia/diagnóstico , Neoplasias Colorrectales/complicaciones , Neoplasias Colorrectales/patología , Músculo Esquelético/metabolismo , Sarcopenia/etiología , Anciano , Anciano de 80 o más Años , Autopsia , Biomarcadores/sangre , Femenino , Proteína HMGB1/sangre , Humanos , Interleucina-6/sangre , Masculino , Persona de Mediana Edad , Cadenas Ligeras de Miosina/metabolismo , Sarcopenia/patología , Factor de Necrosis Tumoral alfa/sangre
13.
Cancer Sci ; 110(10): 3391-3399, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31432554

RESUMEN

Skeletal muscle volume is associated with prognosis of cancer patients. Maintenance of skeletal muscle is an essential concern in cancer treatment. In nutritional intervention, it is important to focus on differences in metabolism between tumor and skeletal muscle. We examined the influence of oral intake of glucose (0%, 10%, 50%) and 2% medium-chain fatty acid (lauric acid, LAA, C12:0) on tumor growth and skeletal muscle atrophy in mouse peritoneal metastasis models using CT26 mouse colon cancer cells and HT29 human colon cancer cells. After 2 weeks of experimental breeding, skeletal muscle and tumor were removed and analyzed. Glucose intake contributed to prevention of skeletal muscle atrophy in a sugar concentration-dependent way and also promoted tumor growth. LAA ingestion elevated the level of skeletal muscle protein and suppressed tumor growth by inducing tumor-selective oxidative stress production. When a combination of glucose and LAA was ingested, skeletal muscle mass increased and tumor growth was suppressed. Our results confirmed that although glucose is an important nutrient for the prevention of skeletal muscle atrophy, it may also foster tumor growth. However, the ingestion of LAA inhibited tumor growth, and its combination with glucose promoted skeletal muscle integrity and function, without stimulating tumor growth. These findings suggest novel strategies for the prevention of skeletal muscle atrophy.


Asunto(s)
Neoplasias del Colon/tratamiento farmacológico , Glucosa/administración & dosificación , Ácidos Láuricos/administración & dosificación , Atrofia Muscular/prevención & control , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/complicaciones , Modelos Animales de Enfermedad , Quimioterapia Combinada , Glucosa/efectos adversos , Glucosa/farmacología , Células HT29 , Humanos , Ácidos Láuricos/farmacología , Masculino , Ratones , Atrofia Muscular/etiología , Trasplante de Neoplasias , Estrés Oxidativo/efectos de los fármacos
14.
J Phys Ther Sci ; 31(5): 462-465, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31164786

RESUMEN

[Purpose] We investigated whether an increase or decrease in subcutaneous fat mass secondary to cardiac cachexia can be evaluated using diagnostic ultrasonography in patients with heart failure. [Participant and Methods] We report a case of cardiac cachexia in a patient in whom cachexia was confirmed by weight loss, decreased dietary intake, and biochemical indicators measured by blood tests. We measured the subcutaneous fat mass in the patient's thigh using ultrasonic diagnostic equipment during the cachectic state, as well as 1 and 2 months later. [Results] An increase in weight and ultrasonographically documented femoral subcutaneous fat mass was confirmed by improvement in heart failure-induced cachexia. [Conclusion] Clinically convenient ultrasonic diagnostic equipment is useful to assess subcutaneous fat mass, which serves as an indicator of the degree of cachexia.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA