Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Langmuir ; 40(16): 8562-8567, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38598826

RESUMEN

The absorption of CO2 by polyethylenimine polymer (PEI) materials is of great interest in connection with proposed carbon capture technologies, and the successful development of this technology requires testing methods quantifying the amount of CO2, H2O, and reaction byproducts under operating conditions. We anticipate that dielectric measurements have the potential for quantifying both the extent of CO2 and H2O absorption within the PEI matrix material as well as insights into subsequent reaction byproducts that can be expected to occur in the presence of moisture. The complexity of the chemistry involved in this reactive binding process clearly points to the need for the use of additional spectroscopic techniques to better resolve the multiple components involved and to validate the model-dependent findings from the dielectric measurements. Here, we employed noncontact resonant microwave cavity instrumentation operating at 7.435 GHz that allows for the precise determination of the complex dielectric permittivity of CO2 films exposed to atmospheres of controlled relative humidity (RH), and N2:CO2 compositions. We find that the addition of CO2 leads to a considerable increase in dielectric loss of the PEI film relative to loss measured in nitrogen (N2) atmosphere across the same RH range. We attribute this effect to a reaction between CO2 and PEI generating a charged dielectrically active species contributing to the dielectric loss in the presence of moisture. Possible reaction mechanisms accounting for these observations are discussed, including the formation of carbamate-ammonium pairs and ammonium cations stabilized by bicarbonate anions that have sufficient local mobility to be dielectrically active in the investigated microwave frequency range. Understanding of these reaction mechanisms and the development of tools to quantify the amount of reactive byproducts are expected to be critical for the design and optimization of carbon capture materials.

2.
ACS Appl Mater Interfaces ; 14(8): 10793-10804, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35179343

RESUMEN

Polymer nanocomposites containing self-assembled cellulose nanocrystals (CNCs) are ideal for advanced applications requiring both strength and toughness as the helicoidal structure of the CNCs deflects crack propagation and the polymer matrix dissipates impact energy. However, any adsorbed water layer surrounding the CNCs may compromise the interfacial adhesion between the polymer matrix and the CNCs, thus impacting stress transfer at that interface. Therefore, it is critical to study the role of water at the interface in connecting the polymer dynamics and the resulting mechanical performance of the nanocomposite. Here, we explore the effect of polymer confinement and water content on polymer dynamics in CNC nanocomposites by covalently attaching a fluorogenic water-sensitive dye to poly(diethylene glycol methyl ether methacrylate) (PMEO2MA), to provide insights into the observed mechanical performance. Utilizing fluorescence lifetime imaging microscopy (FLIM), the lifetime of dye fluorescence decay was measured to probe the polymer chain dynamics of PMEO2MA in CNC nanocomposite films. The PMEO2MA chains experienced distinct regions of differing dynamics within Bouligand structures. A correlation was observed between the average fluorescence lifetime and the mechanical performance of CNC films, indicating that polymer chains with high mobility improved the strain and toughness. These studies demonstrated FLIM as a method to investigate polymer dynamics at the nanosecond timescale that can readily be applied to other composite systems.

3.
ACS Nano ; 15(2): 2301-2317, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33382594

RESUMEN

Specific and tunable modification to the optical properties of single-wall carbon nanotubes (SWCNTs) is demonstrated through direct encapsulation into the nanotube interior of guest molecules with widely varying static dielectric constants. Filled through simple ingestion of the guest molecule, each SWCNT population is demonstrated to display a robust modification to absorbance, fluorescence, and Raman spectra. Over 30 distinct compounds, covering static dielectric constants from 1.8 to 109, are inserted in large diameter SWCNTs (d = 1.104-1.524 nm) and more than 10 compounds in small diameter SWCNTs (d = 0.747-1.153 nm), demonstrating that the general effect of filler dielectric on the nanotube optical properties is a monotonic energy reduction (red-shifting) of the optical transitions with increased magnitude of the dielectric constant. Systematic fitting of the two-dimensional fluorescence-excitation and Raman spectra additionally enables determination of the critical filling diameter for each molecule and distinguishing of overall trends from specific guest-host interactions. Comparisons to predictions from existing theory are presented, and specific guest molecule/SWCNT chirality combinations that disobey the general trend and theory are identified. A general increase of the fluorescence intensity and line narrowing is observed for low dielectric constants, with long linear alkane filled SWCNTs exhibiting emission intensities approaching those of empty SWCNTs. These results demonstrate an exploitable modulation in the optical properties of SWCNTs and provide a foundation for examining higher-order effects, such as due to nonbulk-like molecule stacking, in host-guest interactions in well-controlled nanopore size materials.

4.
J Phys Chem B ; 124(14): 2914-2919, 2020 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-32162926

RESUMEN

We investigated a chemically modified rhodamine B dye as a sensor of local water content in dye-modified epoxy resins, where these measurements were combined with dielectric measurements to estimate the dye-water association ratio in the material. In particular, the water-sensitive fluorogenic dye was covalently attached to the epoxy resin backbone. This dye becomes fluorescent only upon photoactivation by ultraviolet light and its protonation in the presence of water. High-resolution noncontact microwave cavity dielectric measurements on these materials indicate a decrease of the dielectric permittivity upon photoactivation. We utilize this effect to determine the average extent of hydration of the activated dye molecules. Our results suggest that fluorogenic dyes are promising for the quantification of the local water content in polymer materials, such as the technologically important problem of interfacial water in epoxy materials.

5.
Artículo en Inglés | MEDLINE | ID: mdl-34131488

RESUMEN

Solution-processed graphene inks that use ethyl cellulose as a polymer stabilizer are blade-coated into large-area thin films. Following blade-coating, the graphene thin films are cured to pyrolyze the cellulosic polymer, leaving behind an sp2-rich amorphous carbon residue that serves as a binder in addition to facilitating charge transport between graphene flakes. Systematic charge transport measurements, including temperature-dependent Hall effect and non-contact microwave resonant cavity characterization, reveal that the resulting electrically percolating graphene thin films possess high mobility (≈ 160 cm2 V-1 s-1), low energy gap, and thermally activated charge transport, which develop weak localization behavior at cryogenic temperatures.

6.
J Vis Exp ; (152)2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31633693

RESUMEN

The current analytical techniques for characterizing printing and graphic arts substrates are largely ex situ and destructive. This limits the amount of data that can be obtained from an individual sample and renders it difficult to produce statistically relevant data for unique and rare materials. Resonant cavity dielectric spectroscopy is a non-destructive, contactless technique which can simultaneously interrogate both sides of a sheeted material and provide measurements which are suitable for statistical interpretations. This offers analysts the ability to quickly discriminate between sheeted materials based on composition and storage history. In this methodology article, we demonstrate how contactless resonant cavity dielectric spectroscopy may be used to differentiate between paper analytes of varying fiber species compositions, to determine the relative age of the paper, and to detect and quantify the amount of post-consumer waste (PCW) recycled fiber content in manufactured office paper.


Asunto(s)
Celulosa/química , Espectroscopía Dieléctrica/métodos , Papel
7.
Anal Lett ; 53(3)2019.
Artículo en Inglés | MEDLINE | ID: mdl-32116331

RESUMEN

The current analytical techniques for characterizing printing and graphic arts substrates, particularly those used to date and authenticate provenance, are destructive. This limits the amount of data that can be captured from an individual sample. For samples being evaluated in forensic and archeological investigations, any loss or degradation of the materials is undesirable. Furthermore, it is difficult to produce statistically relevant data for such analytes. We have shown elsewhere that a contactless microwave resonant cavity dielectric spectroscopy technique can discriminate between paper samples made from different plant fiber species based on their lignin content. In this publication, we demonstrate the utility of the contactless resonant cavity dielectric spectroscopy (RCDS) technique in the characterization of naturally and artificially aged paper samples. Based on our experimental results, we suggest that the technique could be used in forensic and archeological investigations of unique paper products.

8.
Data Brief ; 20: 1201-1208, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30238028

RESUMEN

The information provided in this data article will cover the growth parameters for monolayer, epitaxial graphene, as well as how to verify the layer homogeneity by confocal laser scanning and optical microscopy. The characterization of the subsequently fabricated quantum Hall device is shown for example cases during a series of environmental exposures. Quantum Hall data acquired from a CYTOP encapsulation is also provided. Data from Raman spectroscopy, atomic force microscopy, and other electrical property trends are shown. Lastly, quantum Hall effect data are presented from devices with deposited Parylene C films measuring 10.7 µm and 720 nm. All data are relevant for Rigosi et al. [1].

9.
Microelectron Eng ; 194: 51-55, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29881131

RESUMEN

Homogeneous, single-crystal, monolayer epitaxial graphene (EG) is the one of most promising candidates for the advancement of quantized Hall resistance (QHR) standards. A remaining challenge for the electrical characterization of EG-based quantum Hall devices as a useful tool for metrology is that they are electrically unstable when exposed to air due to the adsorption of and interaction with atmospheric molecular dopants. The resulting changes in the charge carrier density become apparent by variations in the surface conductivity, the charge carrier mobility, and may result in a transition from n-type to p-type conductivity. This work evaluates the use of Parylene C and Parylene N as passivation layers for EG. Electronic transport of EG quantum Hall devices and non-contact microwave perturbation measurements of millimeter-sized areas of EG are both performed on bare and Parylene coated samples to test the efficacy of the passivation layers. The reported results, showing a significant improvement in passivation due to Parylene deposition, suggest a method for the mass production of millimeter-scale graphene devices with stable electrical properties.

10.
Tappi J ; 17(9)2018.
Artículo en Inglés | MEDLINE | ID: mdl-30983693

RESUMEN

Current product composition and quality test methods for the paper and pulp industry are mainly based on manual ex-situ wet-bench chemistry techniques. For example, the standard method for determining the furnish of paper, TAPPI T 401 "Fiber analysis of paper and paperboard," relies on the experience and visual acuity of a specially trained analyst to determine the individual plant species present and to quantify the amount of each constituent fiber type in a sheet of paper. Thus, there is a need for a fast, nondestructive analytical technique that leverages intrinsic attributes of the analytes. In this paper, we demonstrate an application of dielectric spectroscopy (DS) as a potential metrology to differentiate between nonwood pulp and wood pulp fibers. This in-situ, noncontact and nondestructive assessment method has inherent forensic capabilities and is also amiable to quality assurance techniques such as gauge capability studies and real-time statistical process control (SPC). APPLICATION: The dielectric spectroscopy results presented in this paper can nondestructively determine the amount of lignin in paper products and are in principle comparable to the performance specifications of the TAPPI Standard Test Method T 401 and should enable the sources of printing substrates to be both authenticated and validated in real time in a paper testing laboratory environment.

11.
Small ; 13(26)2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28544485

RESUMEN

Regarding the improvement of current quantized Hall resistance (QHR) standards, one promising avenue is the growth of homogeneous monolayer epitaxial graphene (EG). A clean and simple process is used to produce large, precise areas of EG. Properties like the surface conductivity and dielectric loss tangent remain unstable when EG is exposed to air due to doping from molecular adsorption. Experimental results are reported on the extraction of the surface conductivity and dielectric loss tangent from data taken with a noncontact resonance microwave cavity, assembled with an air-filled, standard R100 rectangular waveguide configuration. By using amorphous boron nitride (a-BN) as an encapsulation layer, stability of EG's electrical properties under ambient laboratory conditions is greatly improved. Moreover, samples are exposed to a variety of environmental and chemical conditions. Both thicknesses of a-BN encapsulation are sufficient to preserve surface conductivity and dielectric loss tangent to within 10% of its previously measured value, a result which has essential importance in the mass production of millimeter-scale graphene devices demonstrating electrical stability.

12.
ACS Appl Mater Interfaces ; 9(16): 14222-14231, 2017 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-28394559

RESUMEN

A known deterrent to the large-scale development and use of cellulose nanocrystals (CNCs) in composite materials is their affinity for moisture, which has a profound effect on dispersion, wetting, interfacial adhesion, matrix crystallization, water uptake, and hydrothermal stability. To quantify and control the hydration and confinement of absorbed water in CNCs, we studied sulfated-CNCs neutralized with sodium cations and CNCs functionalized with less hydrophilic methyl(triphenyl)phosphonium cations. Films were cast from water suspensions at 20 °C under controlled humidity and drying rate, yielding CNC materials with distinguishably different dielectric properties and cholesteric structures. By controlling the evaporation rate, we obtained self-assembled chiral CNC films with extended uniformity, having helical modulation length (nominal pitch) tunable from 1300 to 600 nm. SEM imaging and UV-vis-NIR total reflectance spectra revealed tighter and more uniform CNC packing in films cast at slow evaporation rates or having lower surface energy when modified with phosphonium. The dielectric constant was measured by a noncontact microwave cavity perturbation method and fitted to a classical mixing model employing randomly oriented ellipsoidal water inclusions. The dielectric constant of absorbed water was found to be significantly smaller than that for free liquid indicating a limited mobility due to binding with the CNC "matrix". In the case of hydrophilic Na-modified CNCs, a decreasing pitch led to greater anisotropy in the shape of moisture inclusions (ellipsoidal to platelet-like) and greater confinement. In contrast, the structure of hydrophobic phosphonium-modified CNC films was found to have reduced pitch, yet the shape of confined water remained predominantly spherical. These results provide a useful perspective on the current state of understanding of CNC-water interactions as well as on CNC self-assembly mechanisms. More broadly, we believe that our results are beneficial for the realization of CNC-based functional materials and composites.

13.
Measurement (Lond) ; 87: 146-151, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27499569

RESUMEN

A method is established to reliably determine surface conductance of single-layer or multi-layer atomically thin nano-carbon graphene structures. The measurements are made in an air filled standard R100 rectangular waveguide configuration at one of the resonant frequency modes, typically at TE103 mode of 7.4543 GHz. Surface conductance measurement involves monitoring a change in the quality factor of the cavity as the specimen is progressively inserted into the cavity in quantitative correlation with the specimen surface area. The specimen consists of a nano-carbon-layer supported on a low loss dielectric substrate. The thickness of the conducting nano-carbon layer does not need to be explicitly known, but it is assumed that the lateral dimension is uniform over the specimen area. The non-contact surface conductance measurements are illustrated for a typical graphene grown by chemical vapor deposition process, and for a high quality monolayer epitaxial graphene grown on silicon carbide wafers for which we performed non-gated quantum Hall resistance measurements. The sequence of quantized transverse Hall resistance at the Landau filling factors ν = ±6 and ±2, and the absence of the Hall plateau at ν = 4 indicate that the epitaxially grown graphene is a high quality mono-layer. The resonant microwave cavity measurement is sensitive to the surface and bulk conductivity, and since no additional processing is required, it preserves the integrity of the conductive graphene layer. It allows characterization with high speed, precision and efficiency, compared to transport measurements where sample contacts must be defined and applied in multiple processing steps.

14.
ACS Appl Mater Interfaces ; 8(35): 23230-5, 2016 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-27468781

RESUMEN

Carbon nanotube composites are lightweight, multifunctional materials with readily adjustable mechanical and electrical properties-relevant to the aerospace, automotive, and sporting goods industries as high-performance structural materials. Here, we combine well-established and newly developed characterization techniques to demonstrate that ultraviolet (UV) light exposure provides a controllable means to enhance the electrical conductivity of the surface of a commercial carbon nanotube-epoxy composite by over 5 orders of magnitude. Our observations, combined with theory and simulations, reveal that the increase in conductivity is due to the formation of a concentrated layer of nanotubes on the composite surface. Our model implies that contacts between nanotube-rich microdomains dominate the conductivity of this layer at low UV dose, while tube-tube transport dominates at high UV dose. Further, we use this model to predictably pattern conductive traces with a UV laser, providing a facile approach for direct integration of lightweight conductors on nanocomposite surfaces.

15.
ACS Appl Mater Interfaces ; 8(14): 9327-34, 2016 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-27044063

RESUMEN

Carbon nanotube (CNT) sheets represent a novel implementation of CNTs that enable the tailoring of electrical and mechanical properties for applications in the automotive and aerospace industries. Small molecule functionalization and postprocessing techniques, such as irradiation with high-energy particles, are methods that can enhance the mechanical properties of CNTs. However, the effect that these modifications have on the electrical conduction mechanisms has not been extensively explored. By characterizing the mechanical and electrical properties of multiwalled carbon nanotube (MWCNT) sheets with different functional groups and irradiation doses, we can expand our insights into the extent of the trade-off that exists between mechanical strength and electrical conductivity for commercially available CNT sheets. Such insights allow for the optimization of design pathways for engineering applications that require a balance of material property enhancements.

16.
IEEE Trans Microw Theory Tech ; 64(11): 3807-3819, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28057959

RESUMEN

We present a free-space measurement technique for non-destructive non-contact electrical and dielectric characterization of nano-carbon composites in the Q-band frequency range of 30 GHz to 50 GHz. The experimental system and error correction model accurately reconstruct the conductivity of composite materials that are either thicker than the wave penetration depth, and therefore exhibit negligible microwave transmission (less than -40 dB), or thinner than the wave penetration depth and, therefore, exhibit significant microwave transmission. This error correction model implements a fixed wave propagation distance between antennas and corrects the complex scattering parameters of the specimen from two references, an air slab having geometrical propagation length equal to that of the specimen under test, and a metallic conductor, such as an aluminum plate. Experimental results were validated by reconstructing the relative dielectric permittivity of known dielectric materials and then used to determine the conductivity of nano-carbon composite laminates. This error correction model can simplify routine characterization of thin conducting laminates to just one measurement of scattering parameters, making the method attractive for research, development, and for quality control in the manufacturing environment.

17.
Sci Rep ; 5: 17019, 2015 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-26592441

RESUMEN

Advances in roll-to-roll processing of graphene and carbon nanotubes have at last led to the continuous production of high-quality coatings and filaments, ushering in a wave of applications for flexible and wearable electronics, woven fabrics, and wires. These applications often require specific electrical properties, and hence precise control over material micro- and nanostructure. While such control can be achieved, in principle, by closed-loop processing methods, there are relatively few noncontact and nondestructive options for quantifying the electrical properties of materials on a moving web at the speed required in modern nanomanufacturing. Here, we demonstrate a noncontact microwave method for measuring the dielectric constant and conductivity (or geometry for samples of known dielectric properties) of materials in a millisecond. Such measurement times are compatible with current and future industrial needs, enabling real-time materials characterization and in-line control of processing variables without disrupting production.

18.
Langmuir ; 29(28): 9010-5, 2013 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-23815370

RESUMEN

We observe a resonant transition in the microwave absorption of thin thermally deposited Au nanoparticle films near the geometrical percolation transition pc where the films exhibit a 'fractal' heterogeneous geometry. Absorption of incident microwave radiation increases sharply near pc, consistent with effective medium theory predictions. Both the theory and our experiments indicate that the hierarchical structure of these films makes their absorption insensitive to the microwave radiation wavelength λ, so that this singular absorption of microwave radiation is observed over a broad frequency range between 100 MHz and 20 GHz. The interaction of electromagnetic radiation with randomly distributed conductive scattering particles gives rise to localized resonant modes, and our measurements indicate that this adsorption process is significantly enhanced for microwaves in comparison to ordinary light. In particular, above the percolation transition a portion of the injected microwave power is stored within the film until dissipated. Finally, we find that the measured surface conductivity can be quantitatively described at all Au concentrations by generalized effective medium theory, where the fitted conductivity percolation exponents and pc itself are consistent with known two-dimensional estimates. Our results demonstrate that microwave measurements provide a powerful means of remotely measuring the electromagnetic properties of highly heterogeneous conducting films, enabling purposeful engineering of the electromagnetic properties of thin films in the microwave frequency range through fabrication of 'disordered' films of conducting particles such as metal nanoparticles or carbon nanotubes.

19.
Adv Mater ; 23(3): 338-48, 2011 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-20799292

RESUMEN

Advanced technological uses of single-walled carbon nanotubes (SWCNTs) rely on the production of single length and chirality populations that are currently only available through liquid-phase post processing. The foundation of all of these processing steps is the attainment of individualized nanotube dispersions in solution. An understanding of the colloidal properties of the dispersed SWCNTs can then be used to design appropriate conditions for separations. In many instances nanotube size, particularly length, is especially active in determining the properties achievable in a given population, and, thus, there is a critical need for measurement technologies for both length distribution and effective separation techniques. In this Progress Report, the current state of the art for measuring dispersion and length populations, including separations, is documented, and examples are used to demonstrate the desirability of addressing these parameters.


Asunto(s)
Nanotubos de Carbono/química , Animales , Línea Celular , ADN/química , Conductividad Eléctrica , Electrónica , Humanos , Tamaño de la Partícula , Espectrometría de Fluorescencia
20.
ACS Appl Mater Interfaces ; 1(7): 1561-6, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20355961

RESUMEN

Polymer colloids with an interfacial coating of purified single-wall carbon nanotubes (SWCNTs) are synthesized from length- and type-sorted SWCNTs. Aqueous nanotube suspensions sorted through density-gradient ultracentrifugation are used to emulsify spherical polymer colloids of microscale dimensions that are characterized through a combination of optical microscopy, transmission electron microscopy, and impedance spectroscopy. The SWCNT-polymer composite particles exhibit electrical conductivities comparable to or better than those of bulk SWCNT-polymer composites at nanotube loadings of more than 1 order of magnitude lower. The composite particles retain the unique electronic and optical characteristics of the parent SWCNT solution with potential applications as microelectronic and microoptical components.


Asunto(s)
Nanocompuestos/química , Polímeros/química , Coloides/química , Impedancia Eléctrica , Electrónica , Rayos Láser , Microscopía Electrónica de Transmisión/métodos , Nanopartículas/química , Nanotecnología/métodos , Nanotubos/química , Nanotubos de Carbono/química , Espectrofotometría Infrarroja/métodos , Espectrofotometría Ultravioleta/métodos , Análisis Espectral/métodos , Ultracentrifugación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA