Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
PLoS One ; 9(1): e84750, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24416275

RESUMEN

Soil salinity and alkalinity are important abiotic components that frequently have critical effects on crop growth, productivity and quality. Developing soybean cultivars with high salt tolerance is recognized as an efficient way to maintain sustainable soybean production in a salt stress environment. However, the genetic mechanism of the tolerance must first be elucidated. In this study, 257 soybean cultivars with 135 SSR markers were used to perform epistatic association mapping for salt tolerance. Tolerance was evaluated by assessing the main root length (RL), the fresh and dry weights of roots (FWR and DWR), the biomass of seedlings (BS) and the length of hypocotyls (LH) of healthy seedlings after treatments with control, 100 mM NaCl or 10 mM Na2CO3 solutions for approximately one week under greenhouse conditions. A total of 83 QTL-by-environment (QE) interactions for salt tolerance index were detected: 24 for LR, 12 for FWR, 11 for DWR, 15 for LH and 21 for BS, as well as one epistatic QTL for FWR. Furthermore, 86 QE interactions for alkaline tolerance index were found: 17 for LR, 16 for FWR, 17 for DWR, 18 for LH and 18 for BS. A total of 77 QE interactions for the original trait indicator were detected: 17 for LR, 14 for FWR, 4 for DWR, 21 for LH and 21 for BS, as well as 3 epistatic QTL for BS. Small-effect QTL were frequently observed. Several soybean genes with homology to Arabidopsis thaliana and soybean salt tolerance genes were found in close proximity to the above QTL. Using the novel alleles of the QTL detected above, some elite parental combinations were designed, although these QTL need to be further confirmed. The above results provide a valuable foundation for fine mapping, cloning and molecular breeding by design for soybean alkaline and salt tolerance.


Asunto(s)
Mapeo Cromosómico , Epistasis Genética/genética , Germinación/genética , Glycine max/genética , Glycine max/fisiología , Salinidad , Tolerancia a la Sal/genética , Alelos , Concentración de Iones de Hidrógeno , Fenotipo , Sitios de Carácter Cuantitativo/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA