Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 247
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
2.
Sci Rep ; 14(1): 17450, 2024 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-39134590

RESUMEN

Because of the advent of genome-editing technology, gene knockout (KO) hamsters have become attractive research models for diverse diseases in humans. This study established a new KO model of diabetes by disrupting the insulin receptor substrate-2 (Irs2) gene in the golden (Syrian) hamster. Homozygous KO animals were born alive but with delayed postnatal growth until adulthood. They showed hyperglycemia, high HbA1c, and impaired glucose tolerance. However, they normally responded to insulin stimulation, unlike Irs2 KO mice, an obese type 2 diabetes (T2D) model. Consistent with this, Irs2 KO hamsters did not increase serum insulin levels upon glucose administration and showed ß-cell hypoplasia in their pancreas. Thus, our Irs2 KO hamster provide a unique T2D animal model that is distinct from the obese T2D models. This model may contribute to a better understanding of the pathophysiology of human non-obese T2D with ß-cell dysfunction, the most common type of T2D in East Asian countries, including Japan.


Asunto(s)
Diabetes Mellitus Tipo 2 , Proteínas Sustrato del Receptor de Insulina , Mesocricetus , Animales , Cricetinae , Humanos , Masculino , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Proteínas Sustrato del Receptor de Insulina/genética , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología
3.
Elife ; 132024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38856708

RESUMEN

Once fertilized, mouse zygotes rapidly proceed to zygotic genome activation (ZGA), during which long terminal repeats (LTRs) of murine endogenous retroviruses with leucine tRNA primer (MERVL) are activated by a conserved homeodomain-containing transcription factor, DUX. However, Dux-knockout embryos produce fertile mice, suggesting that ZGA is redundantly driven by an unknown factor(s). Here, we present multiple lines of evidence that the multicopy homeobox gene, Obox4, encodes a transcription factor that is highly expressed in mouse two-cell embryos and redundantly drives ZGA. Genome-wide profiling revealed that OBOX4 specifically binds and activates MERVL LTRs as well as a subset of murine endogenous retroviruses with lysine tRNA primer (MERVK) LTRs. Depletion of Obox4 is tolerated by embryogenesis, whereas concomitant Obox4/Dux depletion markedly compromises embryonic development. Our study identified OBOX4 as a transcription factor that provides genetic redundancy to preimplantation development.


Asunto(s)
Proteínas de Homeodominio , Cigoto , Animales , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Cigoto/metabolismo , Ratones , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica , Genoma , Ratones Noqueados
4.
Stem Cell Reports ; 19(6): 906-921, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38729154

RESUMEN

Removal of somatic histone H3 lysine 9 trimethylation (H3K9me3) from the embryonic genome can improve the efficiency of mammalian cloning using somatic cell nuclear transfer (SCNT). However, this strategy involves the injection of histone demethylase mRNA into embryos, which is limiting because of its invasive and labor-consuming nature. Here, we report that treatment with an inhibitor of G9a (G9ai), the major histone methyltransferase that introduces H3K9me1/2 in mammals, greatly improved the development of mouse SCNT embryos. Intriguingly, G9ai caused an immediate reduction of H3K9me1/2, a secondary loss of H3K9me3 in SCNT embryos, and increased the birth rate of cloned pups about 5-fold (up to 3.9%). G9ai combined with the histone deacetylase inhibitor trichostatin A further improved this rate to 14.5%. Mechanistically, G9ai and TSA synergistically enhanced H3K9me3 demethylation and boosted zygotic genome activation. Thus, we established an easy, highly effective SCNT protocol that would enhance future cloning research and applications.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Histonas , Técnicas de Transferencia Nuclear , Animales , Histonas/metabolismo , Ratones , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , Metilación , Clonación de Organismos/métodos , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/efectos de los fármacos , Desarrollo Embrionario/genética , Ácidos Hidroxámicos/farmacología , Femenino , Inhibidores de Histona Desacetilasas/farmacología
5.
J Reprod Dev ; 70(2): i-iv, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38569840
6.
Sci Rep ; 14(1): 8294, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38670985

RESUMEN

Rats are multiparous rodents that have been used extensively in research; however, the low reproductive performance of some rat strains hampers the broader use of rats as a biomedical model. In this study, the possibility of increasing the litter size after natural mating in rats through superovulation using an anti-inhibin monoclonal antibody (AIMA) was examined. In outbred Wistar rats, AIMA increased the number of ovulated oocytes by 1.3-fold. AIMA did not affect fertilization and subsequent embryonic development, resulting in a 1.4-fold increase in litter size and a high pregnancy rate (86%). In contrast, conventional superovulation by eCG/hCG administration decreased the pregnancy rate to 6-40% and did not increase the litter size. In inbred Brown Norway rats, AIMA increased the litter size by 1.2-fold, and the pregnancy rate increased more than twice (86% versus 38% in controls). AIMA also increased the litter size by 1.5-fold in inbred Tokai High Avoiders and Fischer 344 rats. AIMA increased the efficiency of offspring production by 1.5-, 2.7-, 1.4-, and 1.4-fold, respectively, in the four rat strains. Thus, AIMA may consistently improve the reproductive performance through natural mating in rats, which could promote the use of AIMA in biomedical research.


Asunto(s)
Anticuerpos Monoclonales , Inhibinas , Tamaño de la Camada , Superovulación , Animales , Femenino , Tamaño de la Camada/efectos de los fármacos , Embarazo , Ratas , Superovulación/efectos de los fármacos , Anticuerpos Monoclonales/farmacología , Índice de Embarazo , Ratas Wistar , Reproducción/efectos de los fármacos , Masculino , Ratas Endogámicas F344
7.
Exp Anim ; 73(3): 310-318, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38447983

RESUMEN

Allele-specific monoallelic gene expression is a unique phenomenon and a great resource for analyzing gene regulation. To study this phenomenon, we established new embryonic stem (ES) cell lines derived from F1 hybrid blastocysts from crosses between four mouse subspecies (Mus musculus domesticus, C57BL/6; M. musculus molossinus, MSM/Ms; M. musculus musculus, PWK; M. musculus castaneus, HMI/Ms) and analyzed the expression levels of undifferentiated pluripotent stem cell markers and karyotypes of each line. To demonstrate the utility of our cell lines, we analyzed the allele-specific expression pattern of the Inpp5d gene as an example. The allelic expression depended on the parental alleles; this dependence could be a consequence of differences in compatibility between cis- and trans-elements of the Inpp5d gene from different subspecies. The use of parental mice from four subspecies greatly enhanced genetic polymorphism. The F1 hybrid ES cells retained this polymorphism not only in the Inpp5d gene, but also at a genome-wide level. As we demonstrated for the Inpp5d gene, the established cell lines can contribute to the analysis of allelic expression imbalance based on the incompatibility between cis- and trans-elements and of phenotypes related to this incompatibility.


Asunto(s)
Desequilibrio Alélico , Animales , Ratones , Desequilibrio Alélico/genética , Ratones Endogámicos C57BL , Alelos , Expresión Génica/genética , Línea Celular , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatasas/genética , Polimorfismo Genético , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Células Híbridas , Células Madre Embrionarias , Femenino , Especificidad de la Especie , Masculino
8.
Stem Cell Reports ; 19(4): 443-455, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38458191

RESUMEN

Spermatogonial stem cell (SSC) transplantation is a valuable tool for studying stem cell-niche interaction. However, the conventional approach requires the removal of endogenous SSCs, causing damage to the niche. Here we introduce WIN18,446, an ALDH1A2 inhibitor, to enhance SSC colonization in nonablated recipients. Pre-transplantation treatment with WIN18,446 induced abnormal claudin protein expression, which comprises the blood-testis barrier and impedes SSC colonization. Consequently, WIN18,446 increased colonization efficiency by 4.6-fold compared with untreated host. WIN18,446-treated testes remained small despite the cessation of WIN18,446, suggesting its irreversible effect. Offspring were born by microinsemination using donor-derived sperm. While WIN18,446 was lethal to busulfan-treated mice, cyclophosphamide- or radiation-treated animals survived after WIN18,446 treatment. Although WIN18,446 is not applicable to humans due to toxicity, similar ALDH1A2 inhibitors may be useful for SSC transplantation into nonablated testes, shedding light on the role of retinoid metabolism on SSC-niche interactions and advancing SSC research in animal models and humans.


Asunto(s)
Semen , Espermatogonias , Humanos , Ratones , Masculino , Animales , Espermatogonias/metabolismo , Testículo/metabolismo , Fertilidad , Trasplante de Células Madre , Espermatogénesis
9.
Biol Reprod ; 110(3): 465-475, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-37995271

RESUMEN

The mammalian oviductal lumen is a specialized chamber that provides an environment that strictly regulates fertilization and early embryogenesis, but the regulatory mechanisms to gametes and zygotes are unclear. We evaluated the oviductal regulation of early embryonic development using Ovgp1 (encoding an oviductal humoral factor, OVGP1)-knockout golden hamsters. The experimental results revealed the following: (1) female Ovgp1-knockout hamsters failed to produce litters; (2) in the oviducts of Ovgp1-knockout animals, fertilized eggs were sometimes identified, but their morphology showed abnormal features; (3) the number of implantations in the Ovgp1-knockout females was low; (4) even if implantations occurred, the embryos developed abnormally and eventually died; and (5) Ovgp1-knockout female ovaries transferred to wild-type females resulted in the production of Ovgp1-knockout egg-derived OVGP1-null litters, but the reverse experiment did not. These results suggest that OVGP1-mediated physiological events are crucial for reproductive process in vivo, from fertilization to early embryonic development. This animal model shows that the fate of the zygote is determined not only genetically, but also by the surrounding oviductal microenvironment.


Asunto(s)
Trompas Uterinas , Oviductos , Humanos , Embarazo , Animales , Cricetinae , Femenino , Mesocricetus , Células Germinativas , Ovario , Mamíferos , Glicoproteínas
10.
iScience ; 26(11): 108177, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38107876

RESUMEN

Mammalian embryos differentiate into the inner cell mass (ICM) and trophectoderm at the 8-16 cell stage. The ICM forms a single cluster that develops into a single fetus. However, the factors that determine differentiation and single cluster formation are unknown. Here we investigated whether embryos could develop normally without gravity. As the embryos cannot be handled by an untrained astronaut, a new device was developed for this purpose. Using this device, two-cell frozen mouse embryos launched to the International Space Station were thawed and cultured by the astronauts under microgravity for 4 days. The embryos cultured under microgravity conditions developed into blastocysts with normal cell numbers, ICM, trophectoderm, and gene expression profiles similar to those cultured under artificial-1 g control on the International Space Station and ground-1 g control, which clearly demonstrated that gravity had no significant effect on the blastocyst formation and initial differentiation of mammalian embryos.

11.
J Clin Invest ; 133(22)2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37966118

RESUMEN

In vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) are 2 major assisted reproductive techniques (ARTs) used widely to treat infertility. Recently, spermatogonial transplantation emerged as a new ART to restore fertility to young patients with cancer after cancer therapy. To examine the influence of germ cell manipulation on behavior of offspring, we produced F1 offspring by a combination of two ARTs, spermatogonial transplantation and ICSI. When these animals were compared with F1 offspring produced by ICSI using fresh wild-type sperm, not only spermatogonial transplantation-ICSI mice but also ICSI-only control mice exhibited behavioral abnormalities, which persisted in the F2 generation. Furthermore, although these F1 offspring appeared normal, F2 offspring produced by IVF using F1 sperm and wild-type oocytes showed various types of congenital abnormalities, including anophthalmia, hydrocephalus, and missing limbs. Therefore, ARTs can induce morphological and functional defects in mice, some of which become evident only after germline transmission.


Asunto(s)
Infertilidad , Neoplasias , Humanos , Masculino , Animales , Ratones , Inyecciones de Esperma Intracitoplasmáticas/efectos adversos , Inyecciones de Esperma Intracitoplasmáticas/métodos , Semen , Fertilización In Vitro/métodos , Neoplasias/etiología
12.
Genes Dev ; 37(15-16): 724-742, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37612136

RESUMEN

Histidine (His) residues are methylated in various proteins, but their roles and regulation mechanisms remain unknown. Here, we show that carnosine N-methyltransferase 1 (CARNMT1), a known His methyltransferase of dipeptide carnosine (ßAla-His), is a major His N1-position-specific methyltransferase. We found that 52 His sites in 20 proteins underwent CARNMT1-mediated methylation. The consensus methylation site for CARNMT1 was identified as Cx(F/Y)xH, a C3H zinc finger (C3H ZF) motif. CARNMT1-deficient and catalytically inactive mutant mice showed embryonic lethality. Among the CARNMT1 target C3H ZF proteins, RNA degradation mediated by Roquin and tristetraprolin (TTP) was affected by CARNMT1 and its enzymatic activity. Furthermore, the recognition of the 3' splice site of the CARNMT1 target C3H ZF protein U2AF1 was perturbed, and pre-mRNA alternative splicing (AS) was affected by CARNMT1 deficiency. These findings indicate that CARNMT1-mediated protein His methylation, which is essential for embryogenesis, plays roles in diverse aspects of RNA metabolism by targeting C3H ZF-type RNA-binding proteins and modulating their functions, including pre-mRNA AS and mRNA degradation regulation.


Asunto(s)
Carnosina , Animales , Ratones , Ratones Endogámicos C3H , Histidina/genética , Precursores del ARN , Metiltransferasas/genética , Sitios de Empalme de ARN , Dedos de Zinc
13.
Life Sci Alliance ; 6(11)2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37640449

RESUMEN

Differentiated cell nuclei can be reprogrammed after nuclear transfer (NT) to oocytes and the produced NT embryos can give rise to cloned animals. However, development of NT embryos is often hampered by recurrent reprogramming failures, including the incomplete activation of developmental genes, yet specific genes responsible for the arrest of NT embryos are not well understood. Here, we searched for developmentally important genes among the reprogramming-resistant H3K9me3-repressed genes and identified Alyref and Gabpb1 by siRNA screening. Gene knockout of Alyref and Gabpb1 by the CRISPR/Cas9 system resulted in early developmental arrest in mice. Alyref was needed for the proper formation of inner cell mass by regulating Nanog, whereas Gabpb1 deficiency led to apoptosis. The supplement of Alyref and Gabpb1 mRNA supported efficient preimplantation development of cloned embryos. Alyref and Gabpb1 were silenced in NT embryos partially because of the repressed expression of Klf16 by H3K9me3. Thus, our study shows that the H3K9me3-repressed genes contain developmentally required genes, and the incomplete activation of such genes results in preimplantation arrest of cloned embryos.


Asunto(s)
Apoptosis , Blastocisto , Animales , Ratones , Diferenciación Celular , Núcleo Celular , Técnicas de Inactivación de Genes
14.
Sci Rep ; 13(1): 11175, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37430017

RESUMEN

Wild-derived mouse strains have been extensively used in biomedical research because of the high level of inter-strain polymorphisms and phenotypic variations. However, they often show poor reproductive performance and are difficult to maintain by conventional in vitro fertilization and embryo transfer. In this study, we examined the technical feasibility of derivation of nuclear transfer embryonic stem cells (ntESCs) from wild-derived mouse strains for their safe genetic preservation. We used leukocytes collected from peripheral blood as nuclear donors without sacrificing them. We successfully established 24 ntESC lines from two wild-derived strains of CAST/Ei and CASP/1Nga (11 and 13 lines, respectively), both belonging to Mus musculus castaneus, a subspecies of laboratory mouse. Most (23/24) of these lines had normal karyotype, and all lines examined showed teratoma formation ability (4 lines) and pluripotent marker gene expression (8 lines). Two male lines examined (one from each strain) were proven to be competent to produce chimeric mice following injection into host embryos. By natural mating of these chimeric mice, the CAST/Ei male line was confirmed to have germline transmission ability. Our results demonstrate that inter-subspecific ntESCs derived from peripheral leukocytes could provide an alternative strategy for preserving invaluable genetic resources of wild-derived mouse strains.


Asunto(s)
Investigación Biomédica , Células Sanguíneas , Masculino , Animales , Ratones , Leucocitos , Transporte Activo de Núcleo Celular , Células Madre Embrionarias
15.
Cell Host Microbe ; 31(7): 1185-1199.e10, 2023 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-37315561

RESUMEN

Hemochorial placentas have evolved defense mechanisms to prevent the vertical transmission of viruses to the immunologically underdeveloped fetus. Unlike somatic cells that require pathogen-associated molecular patterns to stimulate interferon production, placental trophoblasts constitutively produce type III interferons (IFNL) through an unknown mechanism. We demonstrate that transcripts of short interspersed nuclear elements (SINEs) embedded in miRNA clusters within the placenta trigger a viral mimicry response that induces IFNL and confers antiviral protection. Alu SINEs within primate-specific chromosome 19 (C19MC) and B1 SINEs within rodent-specific microRNA cluster on chromosome 2 (C2MC) produce dsRNAs that activate RIG-I-like receptors (RLRs) and downstream IFNL production. Homozygous C2MC knockout mouse trophoblast stem (mTS) cells and placentas lose intrinsic IFN expression and antiviral protection, whereas B1 RNA overexpression restores C2MCΔ/Δ mTS cell viral resistance. Our results uncover a convergently evolved mechanism whereby SINE RNAs drive antiviral resistance in hemochorial placentas, placing SINEs as integral players in innate immunity.


Asunto(s)
MicroARNs , Animales , Ratones , Femenino , Embarazo , MicroARNs/genética , Placenta , Interferón lambda , Antivirales , Elementos de Nucleótido Esparcido Corto
16.
Life Sci Alliance ; 6(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37225425

RESUMEN

Ubiquitin-like with PHD and RING finger domains 1 (UHRF1) is a protein essential for the maintenance of DNA methylation in somatic cells. However, UHRF1 is predominantly localized in the cytoplasm of mouse oocytes and preimplantation embryos, where it may play a role unrelated to the nuclear function. We herein report that oocyte-specific Uhrf1 KO results in impaired chromosome segregation, abnormal cleavage division, and preimplantation lethality of derived embryos. Our nuclear transfer experiment showed that the phenotype is attributable to cytoplasmic rather than nuclear defects of the zygotes. A proteomic analysis of KO oocytes revealed the down-regulation of proteins associated with microtubules including tubulins, which occurred independently of transcriptomic changes. Intriguingly, cytoplasmic lattices were disorganized, and mitochondria, endoplasmic reticulum, and components of the subcortical maternal complex were mislocalized. Thus, maternal UHRF1 regulates the proper cytoplasmic architecture and function of oocytes and preimplantation embryos, likely through a mechanism unrelated to DNA methylation.


Asunto(s)
Oocitos , Proteómica , Animales , Ratones , Citosol , Retículo Endoplásmico , Mitocondrias , Proteínas Potenciadoras de Unión a CCAAT/genética , Ubiquitina-Proteína Ligasas/genética
17.
Development ; 150(20)2023 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-36897562

RESUMEN

Reactive oxygen species (ROS) are generated from NADPH oxidases and mitochondria; they are generally harmful for stem cells. Spermatogonial stem cells (SSCs) are unique among tissue-stem cells because they undergo ROS-dependent self-renewal via NOX1 activation. However, the mechanism by which SSCs are protected from ROS remains unknown. Here, we demonstrate a crucial role for Gln in ROS protection using cultured SSCs derived from immature testes. Measurements of amino acids required for SSC cultures revealed the indispensable role of Gln in SSC survival. Gln induced Myc expression to drive SSC self-renewal in vitro, whereas Gln deprivation triggered Trp53-dependent apoptosis and impaired SSC activity. However, apoptosis was attenuated in cultured SSCs that lacked NOX1. In contrast, cultured SSCs lacking Top1mt mitochondria-specific topoisomerase exhibited poor mitochondrial ROS production and underwent apoptosis. Gln deprivation reduced glutathione production; supra-molar Asn supplementation allowed offspring production from SSCs cultured without Gln. Therefore, Gln ensures ROS-dependent SSC-self-renewal by providing protection against NOX1 and inducing Myc.


Asunto(s)
Glutamina , Espermatogonias , Masculino , Ratones , Animales , Espermatogonias/metabolismo , Glutamina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proliferación Celular , Células Madre , Células Cultivadas
18.
Methods Mol Biol ; 2637: 247-254, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36773152

RESUMEN

The golden (Syrian) hamster (Mesocricetus auratus) is a small rodent belonging to the Cricetidae family. Golden hamsters have several unique characteristics that are advantageous in the study of reproductive and developmental biology: a highly stable 4-day estrous cycle, a high responsiveness to conventional superovulation methods, and a shortest gestation period (16 days) known among eutherian mammals. Besides these advantages, the technical ease of in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) in this species has contributed much to our understanding of the basic mechanisms of mammalian fertilization. However, the exceptionally strong in vitro developmental block of hamster embryos, especially at the two-cell stage, has hampered the production of genetically modified hamsters, which has resulted in limited use of this species for biomedical research. However, the recently developed in vivo genome editing method (improved genome editing via oviductal nucleic acid delivery, i-GONAD) has overcome this shortcoming and made production of gene-edited hamsters much easier than before. This method has the potential to provide a means of reexamining genes whose functions cannot be identified using mouse models, thus leading to the better understanding of gene functions in mammals. In this chapter, we present our procedure for editing the genome of the golden hamster using i-GONAD.


Asunto(s)
Fertilización In Vitro , Semen , Cricetinae , Ratones , Animales , Femenino , Masculino , Mesocricetus , Fertilización In Vitro/métodos , Inyecciones de Esperma Intracitoplasmáticas , Genoma/genética
19.
Nat Commun ; 13(1): 7860, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36543770

RESUMEN

Seminiferous tubules (STs) in the mammalian testes are connected to the rete testis (RT) via a Sertoli valve (SV). Spermatozoa produced in the STs are released into the tubular luminal fluid and passively transported through the SV into the RT. However, the physiological functions of the RT and SV remain unclear. Here, we identified the expression of Sox17 in RT epithelia. The SV valve was disrupted before puberty in RT-specific Sox17 conditional knockout (Sox17-cKO) male mice. This induced a backflow of RT fluid into the STs, which caused aberrant detachment of immature spermatids. RT of Sox17-cKO mice had reduced expression levels of various growth factor genes, which presumably support SV formation. When transplanted next to the Sox17+ RT, Sertoli cells of Sox17-cKO mice reconstructed the SV and supported proper spermiogenesis in the STs. This study highlights the novel and unexpected modulatory roles of the RT in SV valve formation and spermatogenesis in mouse testes, as a downstream action of Sox17.


Asunto(s)
Red Testicular , Factores de Transcripción SOXF , Maduración Sexual , Espermatogénesis , Animales , Masculino , Ratones , Epitelio , Proteínas HMGB/metabolismo , Mamíferos , Ratones Noqueados , Red Testicular/metabolismo , Células de Sertoli/metabolismo , Factores de Transcripción SOXF/genética , Factores de Transcripción SOXF/metabolismo , Espermatogénesis/genética , Testículo/metabolismo
20.
Front Genet ; 13: 1032760, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36425066

RESUMEN

Endogenous retroviruses (ERVs) in the mammalian genome play diverse roles in embryonic development. These developmentally related ERVs are generally repressed in somatic cells and therefore are likely repressed in embryos derived from somatic cell nuclear transfer (SCNT). In this study, we sought to identify ERVs that are repressed in SCNT-derived morulae, which might cause previously unexplained embryonic deaths shortly after implantation. Our transcriptome analysis revealed that, amongst ERV families, ERVK was specifically, and strongly downregulated in SCNT-derived embryos while other transposable elements including LINE and ERVL were unchanged. Among the subfamilies of ERVK, RLTR45-int was most repressed in SCNT-derived embryos despite its highest expression in control fertilized embryos. Interestingly, the nearby genes (within 5-50 kb, n = 18; 50-200 kb, n = 63) of the repressed RLTR45-int loci were also repressed in SCNT-derived embryos, with a significant correlation between them. Furthermore, lysine H3K27 acetylation was enriched around the RLTR45-int loci. These findings indicate that RLTR45-int elements function as enhancers of nearby genes. Indeed, deletion of two sequential RLTR45-int loci on chromosome 4 or 18 resulted in downregulations of nearby genes at the morula stage. We also found that RLTR45-int loci, especially SCNT-low, enhancer-like loci, were strongly enriched with H3K9me3, a repressive histone mark. Importantly, these H3K9me3-enriched regions were not activated by overexpression of H3K9me3 demethylase Kdm4d in SCNT-derived embryos, suggesting the presence of another epigenetic barrier repressing their expressions and enhancer activities in SCNT embryos. Thus, we identified ERVK subfamily RLTR45-int, putative enhancer elements, as a strong reprogramming barrier for SCNT (253 words).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA