Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 14(1): 8502, 2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38135691

RESUMEN

In human celiac disease (CeD) HLA-DQ2.5 presents gluten peptides to antigen-specific CD4+ T cells, thereby instigating immune activation and enteropathy. Targeting HLA-DQ2.5 with neutralizing antibody for treating CeD may be plausible, yet using pan-HLA-DQ antibody risks affecting systemic immunity, while targeting selected gluten peptide:HLA-DQ2.5 complex (pHLA-DQ2.5) may be insufficient. Here we generate a TCR-like, neutralizing antibody (DONQ52) that broadly recognizes more than twenty-five distinct gluten pHLA-DQ2.5 through rabbit immunization with multi-epitope gluten pHLA-DQ2.5 and multidimensional optimization. Structural analyses show that the proline-rich and glutamine-rich motif of gluten epitopes critical for pathogenesis is flexibly recognized by multiple tyrosine residues present in the antibody paratope, implicating the mechanisms for the broad reactivity. In HLA-DQ2.5 transgenic mice, DONQ52 demonstrates favorable pharmacokinetics with high subcutaneous bioavailability, and blocks immunity to gluten while not affecting systemic immunity. Our results thus provide a rationale for clinical testing of DONQ52 in CeD.


Asunto(s)
Enfermedad Celíaca , Glútenes , Ratones , Animales , Humanos , Conejos , Glútenes/química , Anticuerpos Neutralizantes , Antígenos HLA-DQ , Péptidos/química , Epítopos/química , Ratones Transgénicos
2.
Int J Mol Sci ; 20(7)2019 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-30934765

RESUMEN

Both adiponectin and secreted protein, acidic and rich in cysteine (SPARC) inhibit platelet-derived growth factor-BB (PDGF-BB)-induced and basic fibroblast growth factor (FGF2)-induced angiogenic activities through direct and indirect interactions. Although SPARC enhances nerve growth factor (NGF)-dependent neurogenesis, the physical interaction of NGFß with adiponectin and SPARC remains obscure. Therefore, we first examined their intermolecular interaction by surface plasmon resonance method. NGFß bound to immobilized SPARC with the binding constant of 59.4 nM, comparable with that of PDGF-BB (24.5 nM) but far less than that of FGF2 (14.4 µM). NGFß bound to immobilized full length adiponectin with the binding constant of 103 nM, slightly higher than those of PDGF-BB (24.3 nM) and FGF2 (80.2 nM), respectively. Treatment of PC12 cells with SPARC did not cause mitogen-activated protein kinase (MAPK) activation and neurite outgrowth. However, simultaneous addition of SPARC with NGFß enhanced NGFß-induced MAPK phosphorylation and neurite outgrowth. Treatment of the cells with adiponectin increased AMP-activated protein kinase (AMPK) phosphorylation but failed to induce neurite outgrowth. Simultaneous treatment with NGFß and adiponectin significantly reduced cell size and the number of cells with neurite, even after silencing the adiponectin receptors by their siRNA. These results indicate that NGFß directly interacts with adiponectin and SPARC, whereas these interactions oppositely regulate NGFß functions.


Asunto(s)
Adiponectina/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Osteonectina/metabolismo , Animales , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Ratones , Proyección Neuronal , Células PC12 , Ratas , Receptor de Factor de Crecimiento Nervioso/metabolismo
3.
Sci Rep ; 7(1): 1080, 2017 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-28439081

RESUMEN

Dysregulation of the complement system is linked to the pathogenesis of a variety of hematological disorders. Eculizumab, an anti-complement C5 monoclonal antibody, is the current standard of care for paroxysmal nocturnal hemoglobinuria (PNH) and atypical hemolytic uremic syndrome (aHUS). However, because of high levels of C5 in plasma, eculizumab has to be administered biweekly by intravenous infusion. By applying recycling technology through pH-dependent binding to C5, we generated a novel humanized antibody against C5, SKY59, which has long-lasting neutralization of C5. In cynomolgus monkeys, SKY59 suppressed C5 function and complement activity for a significantly longer duration compared to a conventional antibody. Furthermore, epitope mapping by X-ray crystal structure analysis showed that a histidine cluster located on C5 is crucial for the pH-dependent interaction with SKY59. This indicates that the recycling effect of SKY59 is driven by a novel mechanism of interaction with its antigen and is distinct from other known pH-dependent antibodies. Finally, SKY59 showed neutralizing effect on C5 variant p.Arg885His, while eculizumab does not inhibit complement activity in patients carrying this mutation. Collectively, these results suggest that SKY59 is a promising new anti-C5 agent for patients with PNH and other complement-mediated disorders.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Complemento C5/antagonistas & inhibidores , Complemento C5/inmunología , Animales , Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Neutralizantes/química , Complemento C5/química , Cristalografía por Rayos X , Hemoglobinuria Paroxística/tratamiento farmacológico , Humanos , Macaca fascicularis , Unión Proteica , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA