Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
PLoS Biol ; 21(7): e3002174, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37432947

RESUMEN

Enveloped viruses encode specialised glycoproteins that mediate fusion of viral and host membranes. Discovery and understanding of the molecular mechanisms of fusion have been achieved through structural analyses of glycoproteins from many different viruses, and yet the fusion mechanisms of some viral genera remain unknown. We have employed systematic genome annotation and AlphaFold modelling to predict the structures of the E1E2 glycoproteins from 60 viral species in the Hepacivirus, Pegivirus, and Pestivirus genera. While the predicted structure of E2 varied widely, E1 exhibited a very consistent fold across genera, despite little or no similarity at the sequence level. Critically, the structure of E1 is unlike any other known viral glycoprotein. This suggests that the Hepaci-, Pegi-, and Pestiviruses may possess a common and novel membrane fusion mechanism. Comparison of E1E2 models from various species reveals recurrent features that are likely to be mechanistically important and sheds light on the evolution of membrane fusion in these viral genera. These findings provide new fundamental understanding of viral membrane fusion and are relevant to structure-guided vaccinology.


Asunto(s)
Fusión de Membrana , Pestivirus , Hepacivirus/genética , Pestivirus/genética
2.
Nat Commun ; 12(1): 1002, 2021 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-33579933

RESUMEN

The life cycle of Baculoviridae family insect viruses depends on the viral protein kinase, PK-1, to phosphorylate the regulatory protein, p6.9, to induce baculoviral genome release. Here, we report the crystal structure of Cydia pomenella granulovirus PK-1, which, owing to its likely ancestral origin among host cell AGC kinases, exhibits a eukaryotic protein kinase fold. PK-1 occurs as a rigid dimer, where an antiparallel arrangement of the αC helices at the dimer core stabilizes PK-1 in a closed, active conformation. Dimerization is facilitated by C-lobe:C-lobe and N-lobe:N-lobe interactions between protomers, including the domain-swapping of an N-terminal helix that crowns a contiguous ß-sheet formed by the two N-lobes. PK-1 retains a dimeric conformation in solution, which is crucial for catalytic activity. Our studies raise the prospect that parallel, side-to-side dimeric arrangements that lock kinase domains in a catalytically-active conformation could function more broadly as a regulatory mechanism among eukaryotic protein kinases.


Asunto(s)
Dimerización , Granulovirus/enzimología , Proteínas Quinasas/química , Proteínas Quinasas/metabolismo , Baculoviridae/metabolismo , Cristalografía por Rayos X , Granulovirus/genética , Simulación de Dinámica Molecular , Fosforilación , Conformación Proteica , Proteínas Quinasas/genética , Subunidades de Proteína/metabolismo , Proteínas Virales/metabolismo
3.
J Biol Chem ; 294(21): 8505-8515, 2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-30962284

RESUMEN

meso-Diaminopimelate decarboxylase catalyzes the decarboxylation of meso-diaminopimelate, the final reaction in the diaminopimelate l-lysine biosynthetic pathway. It is the only known pyridoxal-5-phosphate-dependent decarboxylase that catalyzes the removal of a carboxyl group from a d-stereocenter. Currently, only prokaryotic orthologs have been kinetically and structurally characterized. Here, using complementation and kinetic analyses of enzymes recombinantly expressed in Escherichia coli, we have functionally tested two putative eukaryotic meso-diaminopimelate decarboxylase isoforms from the plant species Arabidopsis thaliana We confirm they are both functional meso-diaminopimelate decarboxylases, although with lower activities than those previously reported for bacterial orthologs. We also report in-depth X-ray crystallographic structural analyses of each isoform at 1.9 and 2.4 Å resolution. We have captured the enzyme structure of one isoform in an asymmetric configuration, with one ligand-bound monomer and the other in an apo-form. Analytical ultracentrifugation and small-angle X-ray scattering solution studies reveal that A. thaliana meso-diaminopimelate decarboxylase adopts a homodimeric assembly. On the basis of our structural analyses, we suggest a mechanism whereby molecular interactions within the active site transduce conformational changes to the active-site loop. These conformational differences are likely to influence catalytic activity in a way that could allow for d-stereocenter selectivity of the substrate meso-diaminopimelate to facilitate the synthesis of l-lysine. In summary, the A. thaliana gene loci At3g14390 and At5g11880 encode functional. meso-diaminopimelate decarboxylase enzymes whose structures provide clues to the stereochemical control of the decarboxylation reaction catalyzed by these eukaryotic proteins.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/enzimología , Carboxiliasas/química , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Carboxiliasas/genética , Dominio Catalítico , Cristalografía por Rayos X , Dominios Proteicos
4.
Acta Crystallogr F Struct Biol Commun ; 75(Pt 4): 233-238, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-30950823

RESUMEN

Many viral genomes encode kinase and phosphatase enzymes to manipulate pathways that are controlled by phosphorylation events. The majority of viral phosphatase genes occur in the Baculoviridae and Poxviridae families of large DNA viruses. The corresponding protein sequences belong to four major homology groups, and structures are currently available for only two of these. Here, the first structure from the third group, the protein tyrosine phosphatase-2 (PTP-2) class of viral phosphatases, is described. It is shown that Cydia pomonella granulovirus PTP-2 has the same general fold and active-site architecture as described previously for other phosphatases, in the absence of significant sequence homology. Additionally, it has a novel C-terminal extension in an area corresponding to the interface of dimeric poxvirus phosphatases belonging to the Tyr-Ser protein phosphatase homology group.


Asunto(s)
Granulovirus/enzimología , Proteína Fosfatasa 2/química , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Proteínas Quinasas/química , Estructura Secundaria de Proteína , Alineación de Secuencia
5.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 5): 663-8, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24817733

RESUMEN

Diaminopimelate decarboxylase catalyses the last step in the diaminopimelate-biosynthetic pathway leading to S-lysine: the decarboxylation of meso-diaminopimelate to form S-lysine. Lysine biosynthesis occurs only in microorganisms and plants, and lysine is essential for the growth and development of animals. Thus, the diaminopimelate pathway represents an attractive target for antimicrobial and herbicide treatments and has received considerable attention from both a mechanistic and a structural viewpoint. Diaminopimelate decarboxylase has only been characterized in prokaryotic species. This communication describes the first structural studies of two diaminopimelate decarboxylase isoforms from a plant. The Arabidopsis thaliana diaminopimelate decarboxylase cDNAs At3g14390 (encoding DapDc1) and At5g11880 (encoding DapDc2) were cloned from genomic DNA and the recombinant proteins were expressed and purified from Escherichia coli Rosetta (DE3) cells. The crystals of DapDc1 and DapDc2 diffracted to beyond 2.00 and 2.27 Å resolution, respectively. Understanding the structural biology of diaminopimelate decarboxylase from a eukaryotic species will provide insights for the development of future herbicide treatments, in particular.


Asunto(s)
Arabidopsis/enzimología , Carboxiliasas/química , Carboxiliasas/aislamiento & purificación , Secuencia de Aminoácidos , Arabidopsis/genética , Carboxiliasas/genética , Cristalización , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/aislamiento & purificación , Datos de Secuencia Molecular , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA