Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
PLOS Digit Health ; 3(8): e0000566, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39178177

RESUMEN

Automated data transmission from diagnostic instrument networks to a central database at the Ministries of Health has the potential of providing real-time quality data not only on diagnostic instrument performance, but also continuous disease surveillance and patient care. We aimed at sharing how a locally developed novel diagnostic connectivity solution channels actionable data from diagnostic instruments to the national dashboards for disease control in Uganda between May 2022 and May 2023. The diagnostic connectivity solution was successfully configured on a selected network of multiplexing diagnostic instruments at 260 sites in Uganda, providing a layered access of data. Of these, 909,674 test results were automatically collected from 269 "GeneXpert" machines, 5597 test results from 28 "Truenat" and >12,000 were from 3 digital x-ray devices to different stakeholder levels to ensure optimal use of data for their intended purpose. The government and relevant stakeholders are empowered with usable and actionable data from the diagnostic instruments. The successful implementation of the diagnostic connectivity solution depended on some key operational strategies namely; sustained internet connectivity and short message services, stakeholder engagement, a strong in-country laboratory coordination network, human resource capacity building, establishing a network for the diagnostic instruments, and integration with existing health data collection tools. Poor bandwidth at some locations was a major hindrance for the successful implementation of the connectivity solution. Maintaining stakeholder engagement at the clinical level is key for sustaining diagnostic data connectivity. The locally developed diagnostic connectivity solution as a digital health technology offers the chance to collect high-quality data on a number of parameters for disease control, including error analysis, thereby strengthening the quality of data from the networked diagnostic sites to relevant stakeholders.

2.
BMC Infect Dis ; 24(1): 646, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937708

RESUMEN

INTRODUCTION: When COVID-19 hit the world in 2019, an enhanced focus on diagnostic testing for SARS-CoV-2 was essential for a successful pandemic response. Testing laboratories stretched their capabilities for the new coronavirus by adopting different test methods. The necessity of having external quality assurance (EQA) mechanisms was even more critical due to this rapid expansion. However, there was a lack of experience in providing the necessary SARS-CoV-2 EQA materials, especially in locations with constrained resources. OBJECTIVE: We aimed to create a PT (Proficiency testing) programme based on the Dried Tube Specimens (DTS) method that would be a practical option for molecular based SARS-CoV-2 EQA in Low- and Middle-Income Countries. METHODS: Based on previous ISO/IEC 17043:2010 accreditation experiences and with assistance from the US Centers for Disease Control and Prevention, The Supranational Reference Laboratory of Uganda (adapted the DTS sample preparation method and completed a pilot EQA program between 2020 and 2021. Stability and panel validation testing was conducted on the designed materials before shipping to pilot participants in six African countries. Participants received a panel containing five SARS-CoV-2 DTS samples, transported at ambient conditions. Results submitted by participants were compared to validation results. Participants were graded as satisfactory (≥ 80%) or unsatisfactory (< 80%) and performance reports disseminated. RESULTS: Our SARS-CoV-2 stability experiments showed that SARS-CoV-2 RNA was stable (-15 to -25 °C, 4 to 8 °C, (18 to 28 °C) room temperature and 35 to 38 °C) as well as DTS panels (4 to 8 °C, 18 to 28 °C, 35 to 38 °C and 45 °C) for a period of 4 weeks. The SARS-CoV-2 DTS panels were successfully piloted in 35 test sites from Zambia, Malawi, Mozambique, Nigeria, and Seychelles. The pilot results of the participants showed good accuracy, with an average of 86% (30/35) concordance with the original SARS CoV-2 expectations. CONCLUSION: The SARS-CoV-2 DTS PT panel is reliable, stable at ambient temperature, simple to prepare and requires minimal resources.


Asunto(s)
COVID-19 , Países en Desarrollo , Ensayos de Aptitud de Laboratorios , SARS-CoV-2 , Manejo de Especímenes , Humanos , COVID-19/diagnóstico , SARS-CoV-2/aislamiento & purificación , Manejo de Especímenes/métodos , Manejo de Especímenes/normas , Prueba de COVID-19/métodos , Uganda , Proyectos Piloto
3.
Hum Resour Health ; 21(1): 89, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37990265

RESUMEN

BACKGROUND: Achieving the targeted organizational goals through effective training can increase employee satisfaction. Since 2015, the Supranational Reference Laboratory Uganda (SRL Uganda) has trained National Tuberculosis Reference Laboratories (NTRLs) from 21 countries in a variety of areas that cover both technical and programmatic aspects pertinent to TB laboratories. The Laboratory Quality Management System (LQMS) under SRL coordinates actions intended to ensure sustained quality of the laboratory services offered by the National TB Reference Laboratories. In order for laboratory results to be helpful in a clinical or public health setting, they must be accurate, reliable, and timely. The LQMS course aims to provide learners with knowledge on how to attain and maintain this quality. Prior to this study, there was hardly any data available on the effectiveness of LQMS trainings provided by SRL Uganda; using Kirkpatrick model, which is popular among researchers for evaluating the efficacy of the training program, this paper seeks to establish the effectiveness of the LQMS training offered by the SRL Uganda. METHOD: We evaluated the effectiveness of LQMS training within the Uganda's SRL network for courses offered during the period 2017 and 2021 for participants from the Southern and East African sub-Saharan region. RESULTS: In 2017 and 2021, respectively, test results from 10/17 and 9/17 showed overall post-test scores above 80%. Of the 18 labs evaluated, 14 showed improvement; of these, 7 labs were from the Eastern region and the other 7 were from Southern Africa; one facility in this region also maintained its accreditation. In the post-evaluation assessment, attendees of the LQMS course gave feedback of strongly agree and agree variety. CONCLUSION: More SRL Uganda network laboratories in the regions achieved a 5-star SLIPTA level rating and among these, 5 NTRLs got ISO 15189:2012 accredited by the end of 2021, while one maintained its accreditation status. This proves that the Laboratory Quality Management System training program was an effective tool in improving the quality of laboratory services, work practices, and processes.


Asunto(s)
Laboratorios , Tuberculosis , Humanos , Uganda , Tuberculosis/diagnóstico , Tuberculosis/tratamiento farmacológico , Encuestas y Cuestionarios , África del Norte
4.
BMC Genomics ; 23(1): 561, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35931954

RESUMEN

BACKGROUND: Mycobacterium tuberculosis presents several lineages each with distinct characteristics of evolutionary status, transmissibility, drug resistance, host interaction, latency, and vaccine efficacy. Whole genome sequencing (WGS) has emerged as a new diagnostic tool to reliably inform the occurrence of phylogenetic lineages of Mycobacterium tuberculosis and examine their relationship with patient demographic characteristics and multidrug-resistance development. METHODS: 191 Mycobacterium tuberculosis isolates obtained from a 2017/2018 Tanzanian drug resistance survey were sequenced on the Illumina Miseq platform at Supranational Tuberculosis Reference Laboratory in Uganda. Obtained fast-q files were imported into tools for resistance profiling and lineage inference (Kvarq v0.12.2, Mykrobe v0.8.1 and TBprofiler v3.0.5). Additionally for phylogenetic tree construction, RaxML-NG v1.0.3(25) was used to generate a maximum likelihood phylogeny with 800 bootstrap replicates. The resulting trees were plotted, annotated and visualized using ggtree v2.0.4 RESULTS: Most [172(90.0%)] of the isolates were from newly treated Pulmonary TB patients. Coinfection with HIV was observed in 33(17.3%) TB patients. Of the 191 isolates, 22(11.5%) were resistant to one or more commonly used first line anti-TB drugs (FLD), 9(4.7%) isolates were MDR-TB while 3(1.6%) were resistant to all the drugs. Of the 24 isolates with any resistance conferring mutations, 13(54.2%) and 10(41.6%) had mutations in genes associated with resistance to INH and RIF respectively. The findings also show four major lineages i.e. Lineage 3[81 (42.4%)], followed by Lineage 4 [74 (38.7%)], the Lineage 1 [23 (12.0%)] and Lineages 2 [13 (6.8%)] circulaing in Tanzania. CONCLUSION: The findings in this study show that Lineage 3 is the most prevalent lineage in Tanzania whereas drug resistant mutations were more frequent among isolates that belonged to Lineage 4.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Demografía , Farmacorresistencia Bacteriana Múltiple/genética , Genotipo , Humanos , Pruebas de Sensibilidad Microbiana , Mutación , Filogenia , Tanzanía/epidemiología , Tuberculosis/microbiología , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico
5.
Antimicrob Resist Infect Control ; 11(1): 68, 2022 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-35550202

RESUMEN

BACKGROUND: Uganda remains one of the countries with the highest burden of TB/HIV. Drug-resistant TB remains a substantial challenge to TB control globally and requires new strategic effective control approaches. Drug resistance usually develops due to inadequate management of TB patients including improper treatment regimens and failure to complete the treatment course which may be due to an unstable supply or a lack of access to treatment, as well as patient noncompliance. METHODS: Two sputa samples were collected from Xpert MTB/RIF® assay-diagnosed multi-drug resistant tuberculosis (MDR-TB) patient at Lira regional referral hospital in northern Uganda between 2020 and 2021 for comprehensive routine mycobacterial species identification and drug susceptibility testing using culture-based methods. Detection of drug resistance-conferring genes was subsequently performed using whole-genome sequencing with Illumina MiSeq platform at the TB Supranational Reference Laboratory in Uganda. RESULTS: In both isolates, extensively drug-resistant TB (XDR-TB) was identified including resistance to Isoniazid (katG p.Ser315Thr), Rifampicin (rpoB p.Ser450Leu), Moxifloxacin (gyrA p.Asp94Gly), Bedaquiline (Rv0678 Glu49fs), Clofazimine (Rv0678 Glu49fs), Linezolid (rplC Cys154Arg), and Ethionamide (ethA c.477del). Further analysis of these two high quality genomes revealed that this 32 years-old patient was infected with the Latin American Mediterranean TB strain (LAM). CONCLUSIONS: This is the first identification of extensively drug-resistant Mycobacterium tuberculosis clinical isolates with bedaquiline, linezolid and clofazimine resistance from Uganda. These acquired resistances were because of non-adherence as seen in the patient's clinical history. Our study also strongly highlights the importance of combating DR-TB in Africa through implementing next generation sequencing that can test resistance to all drugs while providing a faster turnaround time. This can facilitate timely clinical decisions in managing MDR-TB patients with non-adherence or lost to follow-up.


Asunto(s)
Tuberculosis Extensivamente Resistente a Drogas , Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Adulto , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Clofazimina/farmacología , Clofazimina/uso terapéutico , Diarilquinolinas , Tuberculosis Extensivamente Resistente a Drogas/tratamiento farmacológico , Tuberculosis Extensivamente Resistente a Drogas/microbiología , Humanos , Linezolid/farmacología , Linezolid/uso terapéutico , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/genética , Rifampin/farmacología , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Uganda
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA