Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pediatr Radiol ; 54(4): 606-619, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38467874

RESUMEN

Voiding cystourethrography (VCUG) is a fluoroscopic technique that allows the assessment of the urinary tract, including the urethra, bladder, and-if vesicoureteral reflux (VUR) is present-the ureters and the pelvicalyceal systems. The technique also allows for the assessment of bladder filling and emptying, providing information on anatomical and functional aspects. VCUG is, together with contrast-enhanced voiding urosonography (VUS), still the gold standard test to diagnose VUR and it is one of the most performed fluoroscopic examinations in pediatric radiology departments. VCUG is also considered a follow-up examination after urinary tract surgery, and one of the most sensitive techniques for studying anatomy of the lower genitourinary tract in suspected anatomical malformations. The international reflux study in 1985 published the first reflux-protocol and graded VUR into five classes; over the following years, other papers have been published on this topic. In 2008, the European Society of Paediatric Radiology (ESPR) Uroradiology Task Force published the first proposed VCUG Guidelines with internal scientific society agreement. The purpose of our work is to create a detailed overview of VCUG indications, procedural recommendations, and to provide a structured final report, with the aim of updating the 2008 VCUG paper proposed by the European Society of Paediatric Radiology (ESPR). We have also compared VCUG with contrast-enhanced VUS as an emergent alternative. As a result of this work, the ESPR Urogenital Task Force strongly recommends the use of contrast-enhanced VUS as a non-radiating imaging technique whenever indicated and possible.


Asunto(s)
Radiología , Reflujo Vesicoureteral , Niño , Humanos , Lactante , Ultrasonografía/métodos , Vejiga Urinaria/diagnóstico por imagen , Micción , Reflujo Vesicoureteral/diagnóstico por imagen , Uretra/diagnóstico por imagen , Medios de Contraste
2.
Pediatr Radiol ; 54(2): 269-275, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38216682

RESUMEN

BACKGROUND: Liver transplantation is the state-of-the-art curative treatment for end-stage liver disease. Imaging is a key element in the detection of intraoperative and postoperative complications. So far, only limited data regarding the best radiological approach to monitor children during liver transplantation is available. OBJECTIVE: To harmonize the imaging of pediatric liver transplantation, the European Society of Pediatric Radiology Abdominal Taskforce initiated a survey addressing the current status of imaging including the pre-, intra- and postoperative phase. This paper reports the responses related to intraoperative imaging. MATERIALS AND METHODS: An online survey, initiated in 2021, asked European centers performing pediatric liver transplantation 48 questions about their imaging approach. In total, 26 centers were contacted, and 22 institutions from 11 countries returned the survey. RESULTS: Intraoperative ultrasound (US) is used by all sites to assess the quality of the vascular anastomosis in order to ensure optimal perfusion of the liver transplant. Vessel depiction is commonly achieved using color Doppler (95.3%). Additional US-based techniques are employed by fewer centers (power angio mode, 28.6%; B-flow, 19%; contrast-enhanced US, 14.3%). Most centers prefer a collaborative approach, with surgeons responsible for probe handling, while radiologists operate the US machine (47.6%). Less commonly, the intraoperative US is performed by the surgeon alone (28.6%) or by the radiologist alone (23.8%). Timing of US, imaging frequency, and documentation practices vary among centers. CONCLUSION: Intraoperative US is consistently utilized across all sites during pediatric liver transplantation. However, considerable variations were observed in terms of the US setup, technique preferences, timing of controls, and documentation practices. These differences provide valuable insights for future optimization and harmonization studies.


Asunto(s)
Trasplante de Hígado , Radiología , Niño , Humanos , Ultrasonografía , Radiografía , Complicaciones Posoperatorias/diagnóstico por imagen
3.
Pediatr Radiol ; 54(2): 276-284, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38285190

RESUMEN

BACKGROUND: Liver transplantation is the state-of-the-art curative treatment for end-stage liver disease. Imaging is a key element in the detection of postoperative complications. So far, limited data is available regarding the best radiologic approach to monitor children after liver transplantation. OBJECTIVE: To harmonize the imaging of pediatric liver transplantation, the European Society of Pediatric Radiology Abdominal Taskforce initiated a survey addressing the current status of imaging including the pre-, intra-, and postoperative phases. This paper reports the responses related to postoperative imaging. MATERIALS AND METHODS: An online survey, initiated in 2021, asked European centers performing pediatric liver transplantation 48 questions about their imaging approach. In total, 26 centers were contacted, and 22 institutions from 11 countries returned the survey. RESULTS: All sites commence ultrasound (US) monitoring within 24 h after liver transplantation. Monitoring frequency varies across sites, ranging from every 8 h to 72 h in early, and from daily to sporadic use in late postoperative phases. Predefined US protocols are used by 73% of sites. This commonly includes gray scale, color Doppler, and quantitative flow assessment. Alternative flow imaging techniques, contrast-enhanced US, and elastography are applied at 31.8%, 18.2%, and 63.6% of sites, respectively. Computed tomography is performed at 86.4% of sites when clarification is needed. Magnetic resonance imaging is used for selected cases at 36.4% of sites, mainly for assessment of biliary abnormalities or when blood tests are abnormal. CONCLUSION: Diagnostic imaging is extensively used for postoperative surveillance of children after liver transplantation. While US is generally prioritized, substantial differences were noted in US protocol, timing, and monitoring frequency. The study highlights potential areas for future optimization and standardization of imaging, essential for conducting multicenter studies.


Asunto(s)
Trasplante de Hígado , Radiología , Niño , Humanos , Ultrasonografía , Imagen por Resonancia Magnética/métodos , Ultrasonografía Doppler , Complicaciones Posoperatorias/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA