Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Methods Mol Biol ; 2828: 57-68, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39147970

RESUMEN

Recent cancer genome analyses have identified frequently mutated genes that are responsible for the development and malignant progression of cancers, including colorectal cancer (CRC). We previously constructed mouse models that carried major driver mutations of CRC, namely Apc, Kras, Tgfbr2, Trp53, and Fbxw7, in combinations. Comprehensive histological analyses of the models showed a link between mutation combinations and malignant phenotypes, such as invasion, epithelial-mesenchymal transition (EMT), and metastasis. The major cause of cancer-related death is metastasis, making it important to understand the mechanism underlying metastasis in order to develop novel therapeutic strategies. To this end, we have established intestinal tumor-derived organoids from different genotyped mice and generated liver metastasis models via transplantation of the organoids into the spleen. Through histological and imaging analyses of the transplantation models, we have determined that the combination of Apc, Kras, Tgfbr2, and Trp53 mutations promotes liver metastasis at a high incidence. We also demonstrated polyclonal metastasis of tumor cell clusters consisting of genetically and phenotypically distinct cells through our model analysis. These organoid transplantation models recapitulate human CRC metastasis, constituting a useful tool for basic and clinical cancer research as a preclinical model. We herein report the experimental protocols of the organoid culture and generation of metastasis models.


Asunto(s)
Neoplasias Hepáticas , Mutación , Organoides , Animales , Organoides/patología , Ratones , Neoplasias Hepáticas/secundario , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Genotipo , Modelos Animales de Enfermedad , Proteína p53 Supresora de Tumor/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Metástasis de la Neoplasia , Humanos , Proteína de la Poliposis Adenomatosa del Colon/genética , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Transición Epitelial-Mesenquimal/genética
2.
J Biomed Sci ; 31(1): 68, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992694

RESUMEN

BACKGROUND: KRAS mutations frequently occur in cancers, particularly pancreatic ductal adenocarcinoma, colorectal cancer, and non-small cell lung cancer. Although KRASG12C inhibitors have recently been approved, effective precision therapies have not yet been established for all KRAS-mutant cancers. Many treatments for KRAS-mutant cancers, including epigenome-targeted drugs, are currently under investigation. Small ubiquitin-like modifier (SUMO) proteins are a family of small proteins covalently attached to and detached from other proteins in cells via the processes called SUMOylation and de-SUMOylation. We assessed whether SUMOylation inhibition was effective in KRAS-mutant cancer cells. METHODS: The efficacy of the first-in-class SUMO-activating enzyme E inhibitor TAK-981 (subasumstat) was assessed in multiple human and mouse KRAS-mutated cancer cell lines. A gene expression assay using a TaqMan array was used to identify biomarkers of TAK-981 efficacy. The biological roles of SUMOylation inhibition and subsequent regulatory mechanisms were investigated using immunoblot analysis, immunofluorescence assays, and mouse models. RESULTS: We discovered that TAK-981 downregulated the expression of the currently undruggable MYC and effectively suppressed the growth of MYC-expressing KRAS-mutant cancers across different tissue types. Moreover, TAK-981-resistant cells were sensitized to SUMOylation inhibition via MYC-overexpression. TAK-981 induced proteasomal degradation of MYC by altering the balance between SUMOylation and ubiquitination and promoting the binding of MYC and Fbxw7, a key factor in the ubiquitin-proteasome system. The efficacy of TAK-981 monotherapy in immunocompetent and immunodeficient mouse models using a mouse-derived CMT167 cell line was significant but modest. Since MAPK inhibition of the KRAS downstream pathway is crucial in KRAS-mutant cancer, we expected that co-inhibition of SUMOylation and MEK might be a good option. Surprisingly, combination treatment with TAK-981 and trametinib dramatically induced apoptosis in multiple cell lines and gene-engineered mouse-derived organoids. Moreover, combination therapy resulted in long-term tumor regression in mouse models using cell lines of different tissue types. Finally, we revealed that combination therapy complementally inhibited Rad51 and BRCA1 and accumulated DNA damage. CONCLUSIONS: We found that MYC downregulation occurred via SUMOylation inhibition in KRAS-mutant cancer cells. Our findings indicate that dual inhibition of SUMOylation and MEK may be a promising treatment for MYC-expressing KRAS-mutant cancers by enhancing DNA damage accumulation.


Asunto(s)
Daño del ADN , Proteínas Proto-Oncogénicas p21(ras) , Sumoilación , Sumoilación/efectos de los fármacos , Animales , Ratones , Humanos , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Mutación , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética
3.
J Biochem ; 176(3): 187-195, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38889670

RESUMEN

Intratumour heterogeneity has been shown to play a role in the malignant progression of cancer. The clonal evolution in primary cancer has been well studied, however, that in metastatic tumorigenesis is not fully understood. In this study, we established human colon cancer-derived organoids and investigated clonal dynamics during liver metastasis development by tracking barcode-labelled subclones. Long-term subclone co-cultures showed clonal drift, with a single subclone becoming dominant in the cell population. Interestingly, the selected subclones were not always the same, suggesting that clonal selection was not based on cell intrinsic properties. Furthermore, liver tumours developed by co-transplantation of organoid subclones into the immunodeficient mouse spleen showed a progressive drastic reduction in clonal diversity, and only one or two subclones predominated in the majority of large metastatic tumours. Importantly, selections were not limited to particular subclones but appeared to be random. A trend towards a reduction in clonal diversity was also found in liver metastases of multiple colour-labelled organoids of mouse intestinal tumours. Based on these results, we propose a novel mechanism of metastasis development, i.e. a subclone population of the disseminated tumour cells in the liver is selected by neutral selection during colonization and constitutes large metastatic tumours.


Asunto(s)
Neoplasias del Colon , Neoplasias Hepáticas , Neoplasias del Colon/patología , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Humanos , Animales , Ratones , Neoplasias Hepáticas/secundario , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Organoides/patología , Organoides/metabolismo , Metástasis de la Neoplasia , Evolución Clonal
4.
Sci Bull (Beijing) ; 69(12): 1909-1919, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38644130

RESUMEN

Colorectal cancer (CRC), a widespread malignancy, is closely associated with tumor microenvironmental hydrogen peroxide (H2O2) levels. Some clinical trials targeting H2O2 for cancer treatment have revealed its paradoxical role as a promoter of cancer progression. Investigating the dynamics of cancer cell H2O2 eustress at the single-cell level is crucial. In this study, non-contact hopping probe mode scanning ion conductance microscopy (HPICM) with high-sensitive Pt-functionalized nanoelectrodes was employed to measure dynamic extracellular to intracellular H2O2 gradients in individual colorectal cancer Caco-2 cells. We explored the relationship between cellular mechanical properties and H2O2 gradients. Exposure to 0.1 or 1 mmol/L H2O2 eustress increased the extracellular to intracellular H2O2 gradient from 0.3 to 1.91 or 3.04, respectively. Notably, cellular F-actin-dependent stiffness increased at 0.1 mmol/L but decreased at 1 mmol/L H2O2 eustress. This H2O2-induced stiffness modulated AKT activation positively and glutathione peroxidase 2 (GPX2) expression negatively. Our findings unveil the failure of some H2O2-targeted therapies due to their ineffectiveness in generating H2O2, which instead acts eustress to promote cancer cell survival. This research also reveals the complex interplay between physical properties and biochemical signaling in cancer cells' antioxidant defense, illuminating the exploitation of H2O2 eustress for survival at the single-cell level. Inhibiting GPX and/or catalase (CAT) enhances the cytotoxic activity of H2O2 eustress against CRC cells, which holds significant promise for developing innovative therapies targeting cancer and other H2O2-related inflammatory diseases.


Asunto(s)
Neoplasias Colorrectales , Peróxido de Hidrógeno , Humanos , Peróxido de Hidrógeno/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Células CACO-2 , Glutatión Peroxidasa/metabolismo , Supervivencia Celular/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Actinas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
5.
EBioMedicine ; 103: 105102, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38614865

RESUMEN

BACKGROUND: Cell-cell interaction factors that facilitate the progression of adenoma to sporadic colorectal cancer (CRC) remain unclear, thereby hindering patient survival. METHODS: We performed spatial transcriptomics on five early CRC cases, which included adenoma and carcinoma, and one advanced CRC. To elucidate cell-cell interactions within the tumour microenvironment (TME), we investigated the colocalisation network at single-cell resolution using a deep generative model for colocalisation analysis, combined with a single-cell transcriptome, and assessed the clinical significance in CRC patients. FINDINGS: CRC cells colocalised with regulatory T cells (Tregs) at the adenoma-carcinoma interface. At early-stage carcinogenesis, cell-cell interaction inference between colocalised adenoma and cancer epithelial cells and Tregs based on the spatial distribution of single cells highlighted midkine (MDK) as a prominent signalling molecule sent from tumour epithelial cells to Tregs. Interaction between MDK-high CRC cells and SPP1+ macrophages and stromal cells proved to be the mechanism underlying immunosuppression in the TME. Additionally, we identified syndecan4 (SDC4) as a receptor for MDK associated with Treg colocalisation. Finally, clinical analysis using CRC datasets indicated that increased MDK/SDC4 levels correlated with poor overall survival in CRC patients. INTERPRETATION: MDK is involved in the immune tolerance shown by Tregs to tumour growth. MDK-mediated formation of the TME could be a potential target for early diagnosis and treatment of CRC. FUNDING: Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Science Research; OITA Cancer Research Foundation; AMED under Grant Number; Japan Science and Technology Agency (JST); Takeda Science Foundation; The Princess Takamatsu Cancer Research Fund.


Asunto(s)
Neoplasias Colorrectales , Midkina , Análisis de la Célula Individual , Linfocitos T Reguladores , Microambiente Tumoral , Femenino , Humanos , Masculino , Carcinogénesis/genética , Carcinogénesis/inmunología , Comunicación Celular/inmunología , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/mortalidad , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Tolerancia Inmunológica , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Transcriptoma , Microambiente Tumoral/inmunología , Midkina/inmunología , Midkina/metabolismo
6.
Diabetol Int ; 15(1): 5-18, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38264218

RESUMEN

The Japan Diabetes Society (JDS) and the Japan Cancer Association (JCA) launched a joint committee and published their "First Joint Committee Report on Diabetes and Cancer" in 2013, compiling recommendations for physicians and healthcare providers as well as for the general population. In 2016, the "Second Joint Committee Report on Diabetes and Cancer" summarized the current evidence on glycemic control and cancer risk in patients with diabetes. The current "Third Joint Committee Report on Diabetes and Cancer", for which the joint committee also enlisted the assistance of the Japanese Society of Clinical Oncology (JSCO) and the Japanese Society of Medical Oncology (JSMO), reports on the results from the questionnaire survey, "Diabetes Management in Patients Receiving Cancer Therapy," which targeted oncologists responsible for cancer management and diabetologists in charge of glycemic control in cancer patients. The results of the current survey demonstrated that there is a general consensus among oncologists and diabetologists with regard to the need for guidelines on glycemic control goals, the relevance of glycemic control, and glycemic control during cancer therapy in cancer patients.

7.
Cancer Gene Ther ; 31(4): 527-536, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38177308

RESUMEN

To identify genes important for colorectal cancer (CRC) development and metastasis, we established a new metastatic mouse organoid model using Sleeping Beauty (SB) transposon mutagenesis. Intestinal organoids derived from mice carrying actively mobilizing SB transposons, an activating KrasG12D, and an inactivating ApcΔ716 allele, were transplanted to immunodeficient mice. While 66.7% of mice developed primary tumors, 7.6% also developed metastatic tumors. Analysis of SB insertion sites in tumors identified numerous candidate cancer genes (CCGs) identified previously in intestinal SB screens performed in vivo, in addition to new CCGs, such as Slit2 and Atxn1. Metastatic tumors from the same mouse were clonally related to each other and to primary tumors, as evidenced by the transposon insertion site. To provide functional validation, we knocked out Slit2, Atxn1, and Cdkn2a in mouse tumor organoids and transplanted to mice. Tumor development was promoted when these gene were knocked out, demonstrating that these are potent tumor suppressors. Cdkn2a knockout cells also metastasized to the liver in 100% of the mice, demonstrating that Cdkn2a loss confers metastatic ability. Our organoid model thus provides a new approach that can be used to understand the evolutionary forces driving CRC metastasis and a rich resource to uncover CCGs promoting CRC.


Asunto(s)
Elementos Transponibles de ADN , Neoplasias , Ratones , Animales , Elementos Transponibles de ADN/genética , Neoplasias/genética , Mutagénesis , Hígado , Organoides
8.
Pathol Int ; 74(4): 187-196, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38289139

RESUMEN

Nephrogenic adenoma (NA) is an epithelial lesion that usually occurs in the mucosa of the urinary tract. Rare cases of deep infiltrative or perinephric lesions have also been reported. Recently, NA with characteristic fibromyxoid stroma (fibromyxoid NA) has been proposed as a distinct variant. Although shedding of distal renal tubular cells due to urinary tract rupture has been postulated as the cause of NA in general, the mechanism underlying extraurinary presentation of NA and fibromyxoid stromal change in fibromyxoid NA remains unknown. In this study, we performed mass spectrometry (MS) analysis in a case of perinephric fibromyxoid NA of an 82-year-old man who underwent right nephroureterectomy for distal ureteral cancer. The patient had no prior history of urinary tract injury or radiation. Periodic acid-Schiff staining-positive eosinophilic structureless deposits in the stroma of fibromyxoid NA were microdissected and subjected to liquid chromatography/MS. The analysis revealed the presence of a substantial amount of uromodulin (Tamm-Horsfall protein). The presence of urinary content in the stroma of perinephric fibromyxoid NA suggests that urinary tract rupture and engraftment of renal tubular epithelial cells directly cause the lesion.


Asunto(s)
Adenoma , Masculino , Humanos , Anciano de 80 o más Años , Uromodulina , Adenoma/patología , Espectrometría de Masas
9.
Cancer Sci ; 115(2): 672-681, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38184804

RESUMEN

The Japan Diabetes Society and the Japan Cancer Association launched a joint committee and published their "First Joint Committee Report on Diabetes and Cancer" in 2013, compiling recommendations for physicians and health-care providers as well as for the general population. In 2016, the "Second Joint Committee Report on Diabetes and Cancer" summarized the current evidence on glycemic control and cancer risk in patients with diabetes. The current "Third Joint Committee Report on Diabetes and Cancer", for which the joint committee also enlisted the assistance of the Japanese Society of Clinical Oncology and the Japanese Society of Medical Oncology, reports on the results from the questionnaire survey, "Diabetes Management in Patients Receiving Cancer Therapy," which targeted oncologists responsible for cancer management and diabetologists in charge of glycemic control in cancer patients. The results of the current survey indicated that there is a general consensus among oncologists and diabetologists with regard to the need for guidelines on glycemic control goals, the relevance of glycemic control, and glycemic control during cancer therapy in cancer patients.


Asunto(s)
Diabetes Mellitus , Neoplasias , Oncólogos , Médicos , Humanos , Japón/epidemiología , Diabetes Mellitus/epidemiología , Neoplasias/epidemiología , Neoplasias/terapia , Encuestas y Cuestionarios
10.
Cancer Res ; 84(1): 56-68, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-37851521

RESUMEN

Signaling by TGFß family cytokines plays a tumor-suppressive role by inducing cell differentiation, while it promotes malignant progression through epithelial-to-mesenchymal transition (EMT). Identification of the mechanisms regulating the switch from tumor suppression to tumor promotion could identify strategies for cancer prevention and treatment. To identify the key genetic alterations that determine the outcome of TGFß signaling, we used mouse intestinal tumor-derived organoids carrying multiple driver mutations in various combinations to examine the relationship between genotypes and responses to the TGFß family cytokine activin A. KrasG12D mutation protected organoid cells from activin A-induced growth suppression by inhibiting p21 and p27 expression. Furthermore, Trp53R270H gain-of-function (GOF) mutation together with loss of wild-type Trp53 by loss of heterozygosity (LOH) promoted activin A-induced partial EMT with formation of multiple protrusions on the organoid surface, which was associated with increased metastatic incidence. Histologic analysis confirmed that tumor cells at the protrusions showed loss of apical-basal polarity and glandular structure. RNA sequencing analysis indicated that expression of Hmga2, encoding a cofactor of the SMAD complex that induces EMT transcription factors, was significantly upregulated in organoids with Trp53 GOF/LOH alterations. Importantly, loss of HMGA2 suppressed expression of Twist1 and blocked activin A-induced partial EMT and metastasis in Trp53 GOF/LOH organoids. These results indicate that TP53 GOF/LOH is a key genetic state that primes for TGFß family-induced partial EMT and malignant progression of colorectal cancer. Activin signaling may be an effective therapeutic target for colorectal cancer harboring TP53 GOF mutations. SIGNIFICANCE: KRAS and TP53 mutations shift activin-mediated signaling to overcome growth inhibition and promote partial EMT, identifying a subset of patients with colorectal cancer that could benefit from inhibition of TGFß signaling.


Asunto(s)
Neoplasias Colorrectales , Factor de Crecimiento Transformador beta , Animales , Humanos , Ratones , Activinas , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Transición Epitelial-Mesenquimal/genética , Mutación con Ganancia de Función , Mutación , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Proteína p53 Supresora de Tumor/genética
11.
Cancer Cell ; 41(11): 1892-1910.e10, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37863068

RESUMEN

Liver metastases are associated with poor response to current pharmacological treatments, including immunotherapy. We describe a lentiviral vector (LV) platform to selectively engineer liver macrophages, including Kupffer cells and tumor-associated macrophages (TAMs), to deliver type I interferon (IFNα) to liver metastases. Gene-based IFNα delivery delays the growth of colorectal and pancreatic ductal adenocarcinoma liver metastases in mice. Response to IFNα is associated with TAM immune activation, enhanced MHC-II-restricted antigen presentation and reduced exhaustion of CD8+ T cells. Conversely, increased IL-10 signaling, expansion of Eomes CD4+ T cells, a cell type displaying features of type I regulatory T (Tr1) cells, and CTLA-4 expression are associated with resistance to therapy. Targeting regulatory T cell functions by combinatorial CTLA-4 immune checkpoint blockade and IFNα LV delivery expands tumor-reactive T cells, attaining complete response in most mice. These findings support a promising therapeutic strategy with feasible translation to patients with unmet medical need.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias Hepáticas , Humanos , Ratones , Animales , Antígeno CTLA-4/metabolismo , Microambiente Tumoral/genética , Macrófagos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patología
12.
Br J Cancer ; 129(7): 1105-1118, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37596408

RESUMEN

BACKGROUND: Intratumor heterogeneity (ITH) in microsatellite instability-high (MSI-H) colorectal cancer (CRC) has been poorly studied. We aimed to clarify how the ITH of MSI-H CRCs is generated in cancer evolution and how immune selective pressure affects ITH. METHODS: We reanalyzed public whole-exome sequencing data on 246 MSI-H CRCs. In addition, we performed a multi-region analysis from 6 MSI-H CRCs. To verify the process of subclonal immune escape accumulation, a novel computational model of cancer evolution under immune pressure was developed. RESULTS: Our analysis presented the enrichment of functional genomic alterations in antigen-presentation machinery (APM). Associative analysis of neoantigens indicated the generation of immune escape mechanisms via HLA alterations. Multiregion analysis revealed the clonal acquisition of driver mutations and subclonal accumulation of APM defects in MSI-H CRCs. Examination of variant allele frequencies demonstrated that subclonal mutations tend to be subjected to selective sweep. Computational simulations of tumour progression with the interaction of immune cells successfully verified the subclonal accumulation of immune escape mutations and suggested the efficacy of early initiation of an immune checkpoint inhibitor (ICI) -based treatment. CONCLUSIONS: Our results demonstrate the heterogeneous acquisition of immune escape mechanisms in MSI-H CRCs by Darwinian selection, providing novel insights into ICI-based treatment strategies.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Humanos , Inestabilidad de Microsatélites , Neoplasias Colorrectales/patología , Neoplasias del Colon/genética , Mutación , Presentación de Antígeno , Repeticiones de Microsatélite/genética
13.
Methods Mol Biol ; 2691: 19-30, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37355534

RESUMEN

It has been established that the accumulation of driver gene mutations causes malignant progression of colorectal cancer (CRC) through positive selection and clonal expansion, similar to Darwin's evolution. Following this multistep tumorigenesis concept, we previously showed the specific mutation patterns for each process of malignant progression, including submucosal invasion, epithelial mesenchymal transition (EMT), intravasation, and metastasis, using genetically engineered mouse and organoid models. However, we also found that certain populations of cancer-derived organoid cells lost malignant characteristics of metastatic ability, although driver mutations were not impaired, and such subpopulations were eliminated from the tumor tissues by negative selection. These organoid model studies have contributed to our understanding of the cancer evolution mechanism. We herein report the in vitro and in vivo experimental protocols to investigate the survival, growth, and metastatic ability of intestinal tumor-derived organoids. The model system will be useful for basic research as well as the development of clinical strategies.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Intestinales , Ratones , Animales , Neoplasias Intestinales/genética , Neoplasias Intestinales/patología , Intestinos/patología , Modelos Biológicos , Genotipo , Organoides/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología
14.
Cancer Sci ; 114(9): 3478-3486, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37357016

RESUMEN

The stepwise accumulation of key driver mutations is responsible for the development and malignant progression of colorectal cancer in primary sites. Genetic mouse model studies have revealed combinations of driver gene mutations that induce phenotypic changes in tumors toward malignancy. However, cancer evolution is regulated by not only genetic alterations but also nongenetic mechanisms. For example, certain populations of metastatic cancer cells show a loss of malignant characteristics even after the accumulation of driver mutations, and such cells are eliminated in a negative selection manner. Furthermore, a polyclonal metastasis model has recently been proposed, in which cell clusters consisting of genetically heterogeneous cells break off from the primary site, disseminate to distant organs, and develop into heterogenous metastatic tumors. Such nongenetic mechanisms for malignant progression have been elucidated using genetically engineered mouse models as well as organoid transplantation experiments. In this review article, we discuss the role of genetic alterations in the malignant progression of primary intestinal tumors and nongenetic mechanisms for negative selection and polyclonal metastasis, which we learned from model studies.


Asunto(s)
Neoplasias Colorrectales , Animales , Ratones , Mutación , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología
15.
Sci Rep ; 13(1): 1366, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36693917

RESUMEN

The detection and sequencing of the mutated ctDNA is one of the irreplaceable clinical measures in the postoperative management of colorectal cancer (CRC) cases. However, we are curious to comprehend the essential traits of mutated genes comprising metastatic sites out of whole mutated genes in primary sites. In the current retrospective study, we conducted target resequencing of ctDNA using 47 plasma samples and established a cancer panel carrying the commonly mutated genes between primary and recurrent tumors. We found that mutated genes in ctDNA indicated immune-resistance traits with respect to the impaired ability to present neoantigens by loss of expression or binding affinity to HLA in the primary tumor. Compared with the estimated neoantigens from all mutated genes in primary tumors, the neoantigen peptides from commonly mutated genes on the panel showed abundant expression but no binding affinity to HLA. Therefore, ctDNA mutations can be frequently and postoperatively detected to identify recurrence; however, these mutated genes were derived from immune-tolerated clones owing to the loss of neoantigen presentation in primary CRC tumors.


Asunto(s)
Neoplasias Colorrectales , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/cirugía , Neoplasias Colorrectales/patología , Estudios Retrospectivos , Recurrencia Local de Neoplasia/genética , Mutación , Antígenos de Neoplasias/genética
16.
Cell Rep ; 42(1): 111929, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36656712

RESUMEN

The cellular interactions in the tumor microenvironment of colorectal cancer (CRC) are poorly understood, hindering patient treatment. In the current study, we investigate whether events occurring at the invasion front are of particular importance for CRC treatment strategies. To this end, we analyze CRC tissues by combining spatial transcriptomics from patients with a public single-cell transcriptomic atlas to determine cell-cell interactions at the invasion front. We show that CRC cells are localized specifically at the invasion front. These cells induce human leukocyte antigen G (HLA-G) to produce secreted phosphoprotein 1 (SPP1)+ macrophages while conferring CRC cells with anti-tumor immunity, as well as proliferative and invasive properties. Taken together, these findings highlight the signaling between CRC cell populations and stromal cell populations at the cellular level.


Asunto(s)
Neoplasias Colorrectales , Antígenos HLA-G , Humanos , Antígenos HLA-G/genética , Osteopontina , Transcriptoma/genética , Neoplasias Colorrectales/patología , Macrófagos , Microambiente Tumoral
17.
Genes Cells ; 28(1): 42-52, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36453187

RESUMEN

Bisphenol F diglycidyl ether (BFDGE) is widely used in the synthesis process of plastic products. While exposure to bisphenol A diglycidyl ether (BADGE), which has a similar structure to BFDGE and which is used for the same purpose, has been reported to cause health risks, there is still little information on BFDGE. Because it is estimated that the industrial workers are exposed to large amounts of BFDGE, the health risks associated with BFDGE exposure need to be clarified. We investigated the toxicity of cutaneous exposure to BFDGE using an in vitro evaluation system and a mouse exposure model. The tumorigenic potential of BFDGE was confirmed by the Bhas 42 cell transformation assay, which showed that BFDGE has both promoter and initiator activity, in vitro. A single dermal application of BFDGE was associated with minor contact hypersensitivity symptoms. In contrast, repeated dermal exposure to BFDGE for 2 weeks induced persistent acute inflammation with features similar to inflammation in human psoriasis. This is the first report evaluating the toxicity of BFDGE in animals, and we showed that BFDGE carries a health risk of inducing skin dermatitis similar to that in human psoriasis in an exposure period-dependent manner.


Asunto(s)
Dermatitis , Psoriasis , Humanos , Animales , Ratones , Compuestos Epoxi/toxicidad , Dermatitis/etiología , Inflamación/inducido químicamente , Psoriasis/inducido químicamente
18.
Small ; 19(9): e2206213, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36504356

RESUMEN

Studying mechanobiology is increasing of scientific interests in life science and nanotechnology since its impact on cell activities (e.g., adhesion, migration), physiology, and pathology. The role of apical surface (AS) and basal surface (BS) of cells played in mechanobiology is significant. The mechanical mapping and analysis of cells mainly focus on AS while little is known about BS. Here, high-speed scanning ion conductance microscope as a powerful tool is utilized to simultaneously reveal morphologies and local elastic modulus (E) of BS of genotype-defined metastatic intestinal organoids. A simple method is developed to prepare organoid samples allowing for long-term BS imaging. The multiple nano/microstructures, i.e., ridge-like, stress-fiber, and E distributions on BS are dynamically revealed. The statistic E analysis shows softness of BS derived from eight types of organoids following a ranking: malignant tumor cells > benign tumor cells > normal cells. Moreover, the correlation factor between morphology and E is demonstrated depending on cell types. This work as first example reveals the subcellular morphologies and E distributions of BS of cells. The results would provide a clue for correlating genotype of 3D cells to malignant phenotype reflected by E and offering a promising strategy for early-stage diagnosis of cancer.


Asunto(s)
Microscopía , Neoplasias , Humanos , Intestinos , Organoides , Nanotecnología , Neoplasias/patología
19.
Cancer Sci ; 114(4): 1437-1450, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36576236

RESUMEN

Cancer evolution is explained by the accumulation of driver mutations and subsequent positive selection by acquired growth advantages, like Darwin's evolution theory. However, whether the negative selection of cells that have lost malignant properties contributes to cancer progression has not yet been fully investigated. Using intestinal metastatic tumor-derived organoids carrying Apc, Kras, Tgfbr2, and Trp53 quadruple mutations, we demonstrate here that approximately 30% of subclones of the organoids show loss of metastatic ability to the liver while keeping the driver mutations and oncogenic pathways. Notably, highly metastatic subclones also showed a gradual loss of metastatic ability during further passages. Such non-metastatic subclones revealed significantly decreased survival and proliferation ability in Matrigel and collagen gel culture conditions, which may cause elimination from the tumor tissues in vivo. RNA sequencing indicated that stemness-related genes, including Lgr5 and Myb, were significantly downregulated in non-metastatic subclones as well as subclones that lost metastatic ability during additional passages. Furthermore, a CGH analysis showed that non-metastatic subclones were derived from a minor population of parental organoid cells. These results indicate that metastatic ability is continuously lost with decreased stem cell property in certain subpopulations of malignant tumors, and such subpopulations are eliminated by negative selection. Therefore, it is possible that cancer evolution is regulated not only by positive selection but also by negative selection. The mechanism underlying the loss of metastatic ability will be important for the future development of therapeutic strategies against metastasis.


Asunto(s)
Neoplasias Intestinales , Humanos , Neoplasias Intestinales/genética , Neoplasias Intestinales/patología , Intestinos/patología , Mutación , Genes ras , Organoides/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
20.
Commun Biol ; 5(1): 1420, 2022 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-36577784

RESUMEN

Cellular senescence caused by oncogenic stimuli is associated with the development of various age-related pathologies through the senescence-associated secretory phenotype (SASP). SASP is mediated by the activation of cytoplasmic nucleic acid sensors. However, the molecular mechanism underlying the accumulation of nucleotide ligands in senescent cells is unclear. In this study, we revealed that the expression of RNaseH2A, which removes ribonucleoside monophosphates (rNMPs) from the genome, is regulated by E2F transcription factors, and it decreases during cellular senescence. Residual rNMPs cause genomic DNA fragmentation and aberrant activation of cytoplasmic nucleic acid sensors, thereby provoking subsequent SASP factor gene expression in senescent cells. In addition, RNaseH2A expression was significantly decreased in aged mouse tissues and cells from individuals with Werner syndrome. Furthermore, RNaseH2A degradation using the auxin-inducible degron system induced the accumulation of nucleotide ligands and induction of certain tumourigenic SASP-like factors, promoting the metastatic properties of colorectal cancer cells. Our results indicate that RNaseH2A downregulation provokes SASP through nucleotide ligand accumulation, which likely contributes to the pathological features of senescent, progeroid, and cancer cells.


Asunto(s)
ADN , Neoplasias , Animales , Ratones , Senescencia Celular/genética , Fragmentación del ADN , Regulación hacia Abajo , Expresión Génica , Genómica , Ligandos , Neoplasias/genética , Neoplasias/metabolismo , Nucleótidos , Fenotipo , Humanos , Línea Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA