Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Stem Cell Reports ; 2(5): 734-45, 2014 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-24936458

RESUMEN

Utilizing human pluripotent stem cells (hPSCs) in cell-based therapy and drug discovery requires large-scale cell production. However, scaling up conventional adherent cultures presents challenges of maintaining a uniform high quality at low cost. In this regard, suspension cultures are a viable alternative, because they are scalable and do not require adhesion surfaces. 3D culture systems such as bioreactors can be exploited for large-scale production. However, the limitations of current suspension culture methods include spontaneous fusion between cell aggregates and suboptimal passaging methods by dissociation and reaggregation. 3D culture systems that dynamically stir carrier beads or cell aggregates should be refined to reduce shearing forces that damage hPSCs. Here, we report a simple 3D sphere culture system that incorporates mechanical passaging and functional polymers. This setup resolves major problems associated with suspension culture methods and dynamic stirring systems and may be optimal for applications involving large-scale hPSC production.


Asunto(s)
Células Madre Pluripotentes/citología , Polímeros/química , Técnicas de Cultivo de Célula , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Humanos , Cariotipificación , Microscopía Electrónica de Transmisión , Células Madre Pluripotentes/metabolismo , Teratoma/patología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
3.
Cell Rep ; 2(5): 1448-60, 2012 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-23103164

RESUMEN

Human pluripotent stem cells (hPSCs), including embryonic stem cells and induced pluripotent stem cells, are potentially useful in regenerative therapies for heart disease. For medical applications, clinical-grade cardiac cells must be produced from hPSCs in a defined, cost-effective manner. Cell-based screening led to the discovery of KY02111, a small molecule that promotes differentiation of hPSCs to cardiomyocytes. Although the direct target of KY02111 remains unknown, results of the present study suggest that KY02111 promotes differentiation by inhibiting WNT signaling in hPSCs but in a manner that is distinct from that of previously studied WNT inhibitors. Combined use of KY02111 and WNT signaling modulators produced robust cardiac differentiation of hPSCs in a xeno-free, defined medium, devoid of serum and any kind of recombinant cytokines and hormones, such as BMP4, Activin A, or insulin. The methodology has potential as a means for the practical production of human cardiomyocytes for regeneration therapies.


Asunto(s)
Benzotiazoles/farmacología , Diferenciación Celular/efectos de los fármacos , Medio de Cultivo Libre de Suero/farmacología , Miocitos Cardíacos/citología , Fenilpropionatos/farmacología , Células Madre Pluripotentes/citología , Animales , Benzotiazoles/química , Células Cultivadas , Células HEK293 , Haplorrinos , Humanos , Fenilpropionatos/química , Células Madre Pluripotentes/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteínas Wnt/antagonistas & inhibidores , Proteínas Wnt/metabolismo
4.
PLoS One ; 7(9): e45010, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22984602

RESUMEN

Cardiomyocytes (CMs) derived from human embryonic stem cells (hESCs) or human induced pluripotent stem cells (hiPSCs) are functionally heterogeneous, display insufficient biological efficacy and generally possess the electrophysiological properties seen in fetal CMs. However, a homogenous population of hESC/hiPSC-CMs, with properties similar to those of adult human ventricular cells, is required for use in drug cardiotoxicity screening. Unfortunately, despite the requirement for the functional characteristics of post-mitotic beating cell aggregates to mimic the behavior of mature cardiomyocytes in vitro, few technological improvements have been made in this field to date. Previously, we showed that culturing hESC-CMs under low-adhesion conditions with cyclic replating confers continuous contractility on the cells, leading to a functional increase in cardiac gene expression and electrophysiological properties over time. The current study reveals that culturing hESC/hiPSC-CMs under non-adhesive culture conditions enhances the electrophysiological properties of the CMs through an increase in the acetylation of histone H3 lysine residues, as confirmed by western blot analyses. Histone H3 acetylation was induced chemically by treating primitive hESC/hiPSC-CMs with Trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, resulting in an immediate increase in global cardiac gene expression. In functional analyses using multi-electrode array (MEA) recordings, TSA-treated hESC/hiPSC-CM colonies showed appropriate responses to particular concentrations of known potassium ion channel inhibitors. Thus, the combination of a cell-autonomous functional increase in response to non-adhesive culture and short-term TSA treatment of hESC/hiPSC-CM colonies cultured on MEA electrodes will help to make cardiac toxicity tests more accurate and reproducible via genome-wide chromatin activation.


Asunto(s)
Células Madre Embrionarias/metabolismo , Histonas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Acetilación/efectos de los fármacos , Adulto , Western Blotting , Diferenciación Celular/genética , Línea Celular , Canal de Potasio ERG1 , Electrofisiología/métodos , Células Madre Embrionarias/efectos de los fármacos , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Canales de Potasio Éter-A-Go-Go/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacología , Humanos , Ácidos Hidroxámicos/farmacología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Piperidinas/farmacología , Piridinas/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo
5.
PLoS One ; 6(2): e16734, 2011 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-21364991

RESUMEN

Induced pluripotent stem cells (iPSCs) are novel stem cells derived from adult mouse and human tissues by reprogramming. Elucidation of mechanisms and exploration of efficient methods for their differentiation to functional cardiomyocytes are essential for developing cardiac cell models and future regenerative therapies. We previously established a novel mouse embryonic stem cell (ESC) and iPSC differentiation system in which cardiovascular cells can be systematically induced from Flk1(+) common progenitor cells, and identified highly cardiogenic progenitors as Flk1(+)/CXCR4(+)/VE-cadherin(-) (FCV) cells. We have also reported that cyclosporin-A (CSA) drastically increases FCV progenitor and cardiomyocyte induction from mouse ESCs. Here, we combined these technologies and extended them to mouse and human iPSCs. Co-culture of purified mouse iPSC-derived Flk1(+) cells with OP9 stroma cells induced cardiomyocyte differentiation whilst addition of CSA to Flk1(+) cells dramatically increased both cardiomyocyte and FCV progenitor cell differentiation. Spontaneously beating colonies were obtained from human iPSCs by co-culture with END-2 visceral endoderm-like cells. Appearance of beating colonies from human iPSCs was increased approximately 4.3 times by addition of CSA at mesoderm stage. CSA-expanded human iPSC-derived cardiomyocytes showed various cardiac marker expressions, synchronized calcium transients, cardiomyocyte-like action potentials, pharmacological reactions, and ultra-structural features as cardiomyocytes. These results provide a technological basis to obtain functional cardiomyocytes from iPSCs.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Ciclosporina/farmacología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Adulto , Animales , Diferenciación Celular/fisiología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Fenómenos Electrofisiológicos/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Ratones , Miocitos Cardíacos/fisiología , Especificidad de la Especie , Regulación hacia Arriba/efectos de los fármacos
6.
Genes Cells ; 15(12): 1216-27, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21050342

RESUMEN

Cardiomyocytes arise from cells that migrate to the mid-to-anterior region of the primitive streak (PS) during embryogenesis. We previously showed that canonical Wnt/ß-catenin pathway signaling leads to the development of nascent PS populations from human embryonic stem cells (hESCs) and that synergistic activation of the Wnt/ß-catenin pathway and inhibition of bone morphogenetic protein (BMP) signaling by Noggin induced the formation of anterior PS cells. We herein demonstrate that anterior PS cells induced by the activation of ß-catenin with Noggin differentiate into functional cardiomyocytes when cultured in suspension with BMP4 and fibroblast growth factor 2 (FGF2). All aggregates generated from the anterior PS cells developed into contracting cells demonstrating their cardiac potential. More than 30% of the cells in each aggregate were α-actinin-positive cardiomyocytes. In addition, these cardiomyocytes could be easily purified up to 80% by simple size fractionation. In contrast, the posterior PS cells induced by ß-catenin activation without Noggin showed poor cardiac potential. These results show that the commitment to a cardiac lineage in vitro occurs through similar cellular and molecular signaling pathways involved in cardiac development in vivo, thus providing a valuable culture model for studying early cardiac developmental events in hESCs.


Asunto(s)
Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Células Madre Embrionarias/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Línea Primitiva/citología , Transducción de Señal , beta Catenina/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Células Madre Embrionarias/citología , Humanos
7.
Stem Cell Res ; 4(3): 201-13, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20199896

RESUMEN

The field of drug testing currently needs a new integrated assay system, as accurate as systems using native tissues, that will allow us to predict arrhythmia risks of candidate drugs and the relationship between genetic mutations and acquired electrophysiological phenotypes. This could be accomplished by combining the microelectrode array (MEA) system with cardiomyocytes (CMs) derived from human embryonic stem cells (hESC) and induced pluripotential stem cells. CMs have been successfully induced from both types, but their maturation process is not systematically controlled; this results in loss of beating potency and insufficient ion channel function. We generated a transgenic hESC line that facilitates maintenance of hESC-CM clusters every 2 weeks by expressing GFP driven by a cardiac-specific alphaMHC promoter, thereby producing a compact pacemaker lineage within a ventricular population over a year. Further analyses, including quantitative RT-PCR, patch-clamp, and MEA-mediated QT tests, demonstrated that replating culturing continuously enhanced gene expression, ionic current amplitudes, and resistance to K(+) channel blockades in hESC-CMs. Moreover, temporal three-dimensional (3D) culturing accelerated maturation by restoring the global gene repressive status established in the adhesive status. Replating/3D culturing thus produces hESC-CMs that act as functional syncytia suitable for use in regenerative medicine and accurate drug tests.


Asunto(s)
Células Madre Embrionarias/citología , Miocitos Cardíacos/fisiología , Antiarrítmicos/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/metabolismo , Fenómenos Electrofisiológicos , Regulación de la Expresión Génica , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , Miocitos Cardíacos/efectos de los fármacos , Nifedipino/farmacología , Técnicas de Placa-Clamp , Canales de Potasio/metabolismo , Pirimidinonas/farmacología
8.
Curr Stem Cell Res Ther ; 5(3): 227-32, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20214558

RESUMEN

Human pluripotential stem cells including both embryonic stem cells (hESC) and induced pluripotent stem cells (hiPSC) possess self-renewing potency and pluripotentency and can differentiate into virtually any somatic cell type. These features are a distinct advantage for the generation of specific types of human tissue cells in vitro for continuous use in drug development. Recently, an assay system for drug-induced QT interval prolongation using hESC/hiPSC-derived cardiomyocytes and microelectrode arrays (MEA) has been developed. Drug-induced QT interval prolongation (DIQTIP) can lead to sudden cardiac death and is a major safety concern for the drug industry. Regulatory authorities such as the US FDA and the European Medicines Agency require in-vitro testing of all drug candidates to identify potential risk of DIQTIP prior to clinical trials. To reduce the risk of DIQTIP, a routine assay system for in vitro electrophysiological properties using cell-based assays is effective and necessary in early phase of drug discovery. This review discusses developments over the last couple of years for a qualified drug testing method and provides some examples of how hESC/hiPSC-derived cardiomyocytes are beginning to find a practical use for drug discovery and development.


Asunto(s)
Técnicas de Cultivo de Célula , Diseño de Fármacos , Electrofisiología/métodos , Sistema de Conducción Cardíaco/fisiología , Microelectrodos , Miocitos Cardíacos/fisiología , Células Madre Pluripotentes/fisiología , Potenciales de Acción/fisiología , Animales , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Electrofisiología/instrumentación , Humanos , Canales Iónicos/genética , Canales Iónicos/metabolismo , Miocitos Cardíacos/citología , Células Madre Pluripotentes/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA