Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Inorg Chem ; 53(11): 5698-711, 2014 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-24845533

RESUMEN

Syntheses for new ligands based upon dibenzothiophene and dibenzothiophene sulfone platforms, decorated with phosphine oxide and methylphosphine oxide donor groups, are described. Coordination chemistry of 4,6-bis(diphenylphosphinoylmethyl)dibenzothiophene (8), 4,6-bis(diphenylphosphinoylmethyl)dibenzothiophene-5,5-dioxide (9) and 4,6-bis(diphenylphosphinoyl)dibenzothiophene-5,5-dioxide (10) with lanthanide nitrates, Ln(NO3)3·(H2O)n is outlined, and crystal structure determinations reveal a range of chelation interactions on Ln(III) ions. The nitric acid dependence of the solvent extraction performance of 9 and 10 in 1,2-dichloroethane for Eu(III) and Am(III) is described and compared against the extraction behavior of related dibenzofuran ligands (2, 3; R = Ph) and n-octyl(phenyl)-N,N-diisobutylcarbamoylmethyl phosphine oxide (4) measured under identical conditions.

2.
Dalton Trans ; 43(22): 8368-86, 2014 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-24733501

RESUMEN

Stepwise syntheses of 2-{[2-(diphenylphosphoryl)acetamido]methyl}pyridine 1-oxide, 2-[Ph2P(O)CH2C(O)N(H)CH2]C5H4NO (6), 2-{[2-(diphenylphosphoryl)acetamido]methyl}-6-[(diphenylphosphoryl)methyl]pyridine 1-oxide, 2-[Ph2P(O)CH2C(O)N(H)CH2]-6-[Ph2P(O)CH2]C5H3NO (7) and 2,6-bis{[2-(diphenylphosphoryl)acetamido]methyl}pyridine 1-oxide, 2,6-[Ph2P(O)CH2C(O)N(H)CH2]2C5H3NO (8), are reported along with spectroscopic characterization data and single crystal X-ray diffraction structure determination for 6·2H2O, 7 and 2,6-[Ph2P(O)CH2C(O)N(H)CH2]2C5H3N·MeOH 18·MeOH, the pyridine precursor of 8. Molecular mechanics computations indicate that 6, 7 and 8 should experience minimal steric hindrance to donor group reorganization that would permit tridentate, tetradentate and pentadentate docking structures for the respective ligands on lanthanide cations. However, crystal structure determination for the lanthanide complexes, {[Yb(6)(NO3)3]·(MeOH)}n, {[Lu(6)(NO3)3]·(MeOH)}n, [Er(6)2(H2O)2](NO3)3·(H2O)4}n, {[La(13)(NO3)3(MeOH)]·(MeOH)}n, {[Eu(7)(NO3)2(EtOAc)0.5(H2O)0.5](NO3)}2·MeOH and [Dy3(7)4(NO3)4(H2O)2](NO3)5·(MeOH)5·(H2O)2 reveal solid-state structures with mixed chelating/bridging ligand : Ln(III) interactions that employ lower than the maximal denticity. The binding of 6 and 7 with Eu(III) in the solid state and in MeOH solutions is also accessed by emission spectroscopy. The acid dependence for solvent extractions with 6 and 7 in 1,2-dichloroethane for Eu(III) and Am(III) in nitric acid solutions is described and compared with the behavior of n-octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (OPhDiBCMPO, 1b) and 2-[(diphenyl)phosphinoylmethyl]pyridine N-oxide (DPhNOPO, 4a).

3.
Inorg Chem ; 52(6): 3063-83, 2013 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-23461540

RESUMEN

Syntheses for a set of new ligands containing one or two carbamoylmethylphosphine oxide (CMPO) fragments appended to pyridine and pyridine N-oxide platforms are described. Molecular mechanics analyses for gas phase lanthanide-ligand interactions for the pyridine N-oxides indicate that the trifunctional NOPOCO molecules, 2-{[Ph2P(O)][C(O)NEt2]C(H)}C5H4NO (7) and 2-{[Ph2P(O)][C(O)NEt2]CHCH2}C5H4NO (8), and pentafunctional NOPOP'O'COC'O' molecules, 2,6-{[Ph2P(O)][C(O)NEt2]C(H)}2C5H3NO (9) and 2,6-{[Ph2P(O)][C(O)NEt2]CHCH2}2C5H3NO (10), should be able to adopt, with minimal strain, tridentate and pentadentate chelate structures, respectively. As a test of these predictions, selected lanthanide coordination chemistry of the N-oxide derivatives was explored. Crystal structure analyses reveal the formation of a tridentate NOPOCO chelate structure for a 1:1 Pr(III) complex containing 7 while 8 adopts a mixed bidentate/bridging monodentate POCO/NO binding mode with Pr(III). Tridentate and tetradentate chelate structures are obtained for several 1:1 complexes of 9 while a pentadentate chelate structure is observed with 10. Emission spectroscopy for one complex, [Eu(9)(NO3)3], in methanol, shows that the Eu(III) ion resides in a low-symmetry site. Lifetime measurements for methanol and deuterated methanol solutions indicate the presence of four methanol molecules in the inner coordination sphere of the metal ion, in addition to the ligand, with the nitrate anions most likely dissociated. The solvent extraction performance of 7-10 in 1,2-dichloroethane for Eu(III) and Am(III) in nitric acid solutions was analyzed and compared with the performance of 2,6-bis(di-n-octylphosphinoylmethyl)pyridine N-oxide (TONOPOP'O') and n-octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (OPhDiBCMPO) measured under identical conditions.

4.
Chemistry ; 16(42): 12668-77, 2010 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-20859968

RESUMEN

Stereoselective cyclization of zincated α-N-homoallylamino nitriles has been developed. Following treatment with lithium diisopropylamide (LDA) and transmetalation with zinc bromide, α-N-(1-phenylethyl)-N-homoallylamino nitriles lead to 2,3-methanopyrrolidines in moderate to good yields (up to 66 %) and excellent selectivities (up to >98:2). With substrates derived from α-branched homoallylic amines, a stereospecific inversion of the homoallylic stereogenic center was observed. To account for this, a mechanistic rationale involving the formation of zincioiminium ions from zincated α-amino nitriles is put forward. 2,3-Methanopyrrolidines should then arise from a sequence involving an aza-Cope rearrangement providing a configurationally stable (2-azoniaallyl)zinc species that then undergoes a [3+2] cycloaddition reaction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA