Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Microbiol Spectr ; : e0254622, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36719195

RESUMEN

Two of the most important mechanisms of hepatitis C virus (HCV) immune evasion are the high variability of the amino acid sequence and epitope shielding via heavy glycosylation of the envelope (E) proteins. Previously, we showed that chimeric sHBsAg (hepatitis B virus [HBV] small surface antigen)-based virus-like particles (VLPs) carrying highly conserved epitope I from the HCV E2 glycoprotein (sHBsAg_412-425) elicit broadly neutralizing antibodies (bnAbs). However, many reports have identified escape mutations for such bnAbs that shift the N-glycosylation site from N417 to N415. This shift effectively masks the recognition of epitope I by antibodies raised against the wild-type glycoprotein. To investigate if glycan-shift-mediated immune evasion could be overcome by targeted vaccination strategies, we designed sHBsAg-based VLPs carrying epitope I with an N417S change (sHBsAg_N417S). Studies in BALB/c mice revealed that both sHBsAg_412-425 and sHBsAg_N417S VLPs were immunogenic, eliciting antibodies that recognized peptides encompassing epitope I regardless of the N417S change. However, we observed substantial differences in E1E2 glycoprotein binding and cell culture-derived HCV (HCVcc) neutralization between the sera elicited by sHBsAg_412-425 and those elicited by sHBsAg_N417S VLPs. Our results suggest a complex interplay among antibodies targeting epitope I, the E1E2 glycosylation status, and the epitope or global E1E2 conformation. Additionally, we observed striking similarities in the E1E2 glycoprotein binding patterns and HCVcc neutralization between sHBsAg_412-425 sera and AP33, suggesting that the immunization of mice with sHBsAg_412-425 VLPs can elicit AP33-like antibodies. This study emphasizes the role of antibodies against epitope I and represents an initial effort toward designing an antigen that elicits an immune response against epitope I with a glycan shift change. IMPORTANCE Epitope I, located within amino acids 412 to 423 of the HCV E2 glycoprotein, is an important target for an epitope-based HCV vaccine. One interesting feature of epitope I is the N417 glycosylation site, where a single change to S417 or T417 can shift the glycosylation site to position N415. This shift can effectively prevent the binding of broadly neutralizing antibodies targeting epitope I. Aiming to overcome glycan-shift-mediated immune evasion, we constructed sHBsAg_N417S VLPs carrying E2 epitope I, with N417S, and compared them with VLPs carrying wild-type epitope I. We show that antibodies elicited by the sHBsAg-based VLPs presenting two variants of the 412-425 epitope targeted two distinct glycan variants of the HCV E1E2 heterodimer. Our study suggests that due to the conformational flexibility of the E2 glycoprotein and epitope I, future vaccine antigens should elicit antibodies targeting more than one conformation and glycosylation variant of the 412-423 epitope.

2.
NPJ Vaccines ; 6(1): 7, 2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420102

RESUMEN

HCV vaccine development is stymied by the high genetic diversity of the virus and the variability of the envelope glycoproteins. One strategy to overcome this is to identify conserved, functionally important regions-such as the epitopes of broadly neutralizing antibodies (bNAbs)-and use these as a basis for structure-based vaccine design. Here, we report an anti-idiotype approach that has generated an antibody that mimics a highly conserved neutralizing epitope on HCV E2. Crucially, a mutagenesis screen was used to identify the antibody, designated B2.1 A, whose binding characteristics to the bNAb AP33 closely resemble those of the original antigen. Protein crystallography confirmed that B2.1 A is a structural mimic of the AP33 epitope. When used as an immunogen B2.1 A induced antibodies that recognized the same epitope and E2 residues as AP33 and most importantly protected against HCV challenge in a mouse model.

3.
Nat Commun ; 9(1): 2441, 2018 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-29934593

RESUMEN

Zika virus (ZIKV) emerged on a global scale and no licensed vaccine ensures long-lasting anti-ZIKV immunity. Here we report the design and comparative evaluation of four replication-deficient chimpanzee adenoviral (ChAdOx1) ZIKV vaccine candidates comprising the addition or deletion of precursor membrane (prM) and envelope, with or without its transmembrane domain (TM). A single, non-adjuvanted vaccination of ChAdOx1 ZIKV vaccines elicits suitable levels of protective responses in mice challenged with ZIKV. ChAdOx1 prME ∆TM encoding prM and envelope without TM provides 100% protection, as well as long-lasting anti-envelope immune responses and no evidence of in vitro antibody-dependent enhancement to dengue virus. Deletion of prM and addition of TM reduces protective efficacy and yields lower anti-envelope responses. Our finding that immunity against ZIKV can be enhanced by modulating antigen membrane anchoring highlights important parameters in the design of viral vectored ZIKV vaccines to support further clinical assessments.


Asunto(s)
Antígenos Virales/genética , Diseño de Fármacos , Vacunas Virales/inmunología , Infección por el Virus Zika/prevención & control , Virus Zika/inmunología , Adenoviridae/genética , Animales , Acrecentamiento Dependiente de Anticuerpo/inmunología , Antígenos Virales/inmunología , Virus del Dengue/inmunología , Modelos Animales de Enfermedad , Femenino , Vectores Genéticos/genética , Humanos , Inmunogenicidad Vacunal , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos ICR , Pan troglodytes/virología , Dominios Proteicos/genética , Dominios Proteicos/inmunología , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/genética , Virus Zika/genética , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/virología
4.
mBio ; 8(3)2017 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-28512091

RESUMEN

The hepatitis C virus (HCV) glycoprotein E2 is the major target of neutralizing antibodies and is therefore highly relevant for vaccine design. Its structure features a central immunoglobulin (Ig)-like ß-sandwich that contributes to the binding site for the cellular receptor CD81. We show that a synthetic peptide corresponding to a ß-strand of this Ig-like domain forms an α-helix in complex with the anti-E2 antibody DAO5, demonstrating an inside-out flip of hydrophobic residues and a secondary structure change in the composite CD81 binding site. A detailed interaction analysis of DAO5 and cross-competing neutralizing antibodies with soluble E2 revealed that the Ig-like domain is trapped by different antibodies in at least two distinct conformations. DAO5 specifically captures retrovirus particles bearing HCV glycoproteins (HCVpp) and infectious cell culture-derived HCV particles (HCVcc). Infection of cells by DAO5-captured HCVpp can be blocked by a cross-competing neutralizing antibody, indicating that a single virus particle simultaneously displays E2 molecules in more than one conformation on its surface. Such conformational plasticity of the HCV E2 receptor binding site has important implications for immunogen design.IMPORTANCE Recent advances in the treatment of hepatitis C virus (HCV) infection with direct-acting antiviral drugs have enabled the control of this major human pathogen. However, due to their high costs and limited accessibility in combination with the lack of awareness of the mostly asymptomatic infection, there is an unchanged urgent need for an effective vaccine. The viral glycoprotein E2 contains regions that are crucial for virus entry into the host cell, and antibodies that bind to these regions can neutralize infection. One of the major targets of neutralizing antibodies is the central immunoglobulin (Ig)-like domain within E2. We show here that this Ig-like domain is conformationally flexible at the surface of infectious HCV particles and pseudoparticles. Our study provides novel insights into the interactions of HCV E2 with the humoral immune system that should aid future vaccine development.


Asunto(s)
Hepacivirus/química , Dominios de Inmunoglobulinas , Proteínas del Envoltorio Viral/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Sitios de Unión , Cristalografía por Rayos X , Epítopos/química , Epítopos/metabolismo , Células HEK293 , Hepacivirus/inmunología , Hepacivirus/fisiología , Hepatitis C/virología , Humanos , Unión Proteica , Conformación Proteica , Tetraspanina 28/metabolismo , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/metabolismo , Vacunas contra Hepatitis Viral/química , Vacunas contra Hepatitis Viral/inmunología , Internalización del Virus
5.
PLoS One ; 12(5): e0175349, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28558001

RESUMEN

The humoral immune system responds to chronic hepatitis C virus (HCV) infection by producing neutralising antibodies (nAb). In this study we generated three HCV pseudoparticles in which E1E2 glycoprotein sequence was targeted by the host humoral immune system. We used patient derived virus free Fabs (VF-Fabs) obtained from HCV genotype 1a (n = 3), genotype 1b (n = 7) and genotype 3a (n = 1) for neutralisation of HCVpp produced in this study both individually and in combination. Based on the available anti-HCV monoclonal nAb mapping information we selected amino acid region 384-619 for conformational epitope mapping. Amongst our notable findings, we observed significant reduction in HCVpp infectivity (p<0.05) when challenged with a combination of inter genotype and subtype VF-Fabs. We also identified five binding motifs targeted by patient derived VF-Fab upon peptide mapping, of which two shared the residues with previously reported epitopes. One epitope lies within an immunodominant HVR1 and two were novel. In summary, we used a reverse epitope mapping strategy to identify preferred epitopes by the host humoral immune system. Additionally, we have combined different VF-Fabs to further reduce the HCVpp infectivity. Our data indicates that combining the antigen specificity of antibodies may be a useful strategy to reduce (in-vitro) infectivity.


Asunto(s)
Mapeo Epitopo/métodos , Hepacivirus/inmunología , Proteínas del Envoltorio Viral/química , Anticuerpos Antivirales/biosíntesis , Hepacivirus/patogenicidad , Hepatitis C Crónica/inmunología , Hepatitis C Crónica/virología , Humanos , Pruebas de Neutralización , Proteínas del Envoltorio Viral/inmunología , Virulencia
6.
PLoS Negl Trop Dis ; 10(10): e0005048, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27706161

RESUMEN

BACKGROUND: The outbreak of Zika virus (ZIKV) in the Americas has transformed a previously obscure mosquito-transmitted arbovirus of the Flaviviridae family into a major public health concern. Little is currently known about the evolution and biology of ZIKV and the factors that contribute to the associated pathogenesis. Determining genomic sequences of clinical viral isolates and characterization of elements within these are an important prerequisite to advance our understanding of viral replicative processes and virus-host interactions. METHODOLOGY/PRINCIPAL FINDINGS: We obtained a ZIKV isolate from a patient who presented with classical ZIKV-associated symptoms, and used high throughput sequencing and other molecular biology approaches to determine its full genome sequence, including non-coding regions. Genome regions were characterized and compared to the sequences of other isolates where available. Furthermore, we identified a subgenomic flavivirus RNA (sfRNA) in ZIKV-infected cells that has antagonist activity against RIG-I induced type I interferon induction, with a lesser effect on MDA-5 mediated action. CONCLUSIONS/SIGNIFICANCE: The full-length genome sequence including non-coding regions of a South American ZIKV isolate from a patient with classical symptoms will support efforts to develop genetic tools for this virus. Detection of sfRNA that counteracts interferon responses is likely to be important for further understanding of pathogenesis and virus-host interactions.


Asunto(s)
Genoma Viral , Interferón Tipo I/antagonistas & inhibidores , ARN Viral/genética , Infección por el Virus Zika/virología , Virus Zika/aislamiento & purificación , Células A549 , Animales , Brasil/epidemiología , Proteína 58 DEAD Box/metabolismo , Brotes de Enfermedades , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Patógeno , Humanos , Interferón Tipo I/biosíntesis , Interferón Tipo I/genética , Filogenia , ARN Viral/aislamiento & purificación , Células Vero , Replicación Viral , Virus Zika/genética , Virus Zika/patogenicidad , Virus Zika/fisiología
7.
J Virol ; 90(16): 7456-7468, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27279607

RESUMEN

UNLABELLED: Hepatitis C virus (HCV) enters cells via interactions with several host factors, a key one being that between the viral E2 envelope glycoprotein and the CD81 receptor. We previously identified E2 tryptophan residue 420 (W420) as an essential CD81-binding residue. However, the importance of W420 in the context of the native virion is unknown, as those previous studies predate the infectious HCV cell culture (cell culture-derived HCV [HCVcc]) system. Here, we introduced four separate mutations (F, Y, A, or R) at position 420 within the infectious HCVcc JFH-1 genome and characterized their effects on the viral life cycle. While all mutations reduced E2-CD81 binding, only two (W420A and W420R) reduced HCVcc infectivity. Further analyses of mutants with hydrophobic residues (F or Y) found that interactions with the receptors SR-BI and CD81 were modulated, which in turn determined the viral uptake route. Both mutant viruses were significantly less dependent on SR-BI, and its lipid transfer activity, for virus entry. Furthermore, these viruses were resistant to the drug erlotinib, which targets epidermal growth factor receptor (EGFR) (a host cofactor for HCV entry) and also blocks SR-BI-dependent high-density lipoprotein (HDL)-mediated enhancement of virus entry. Together, our data indicate a model where an alteration at position 420 causes a subtle change in the E2 conformation that prevents interaction with SR-BI and increases accessibility to the CD81-binding site, in turn favoring a particular internalization route. These results further show that a hydrophobic residue with a strong preference for tryptophan at position 420 is important, both functionally and structurally, to provide an additional hydrophobic anchor to stabilize the E2-CD81 interaction. IMPORTANCE: Hepatitis C virus (HCV) is a leading cause of liver disease, causing up to 500,000 deaths annually. The first step in the viral life cycle is the entry process. This study investigates the role of a highly conserved residue, tryptophan residue 420, of the viral glycoprotein E2 in this process. We analyzed the effect of changing this residue in the virus and confirmed that this region is important for binding to the CD81 receptor. Furthermore, alteration of this residue modulated interactions with the SR-BI receptor, and changes to these key interactions were found to affect the virus internalization route involving the host cofactor EGFR. Our results also show that the nature of the amino acid at this position is important functionally and structurally to provide an anchor point to stabilize the E2-CD81 interaction.


Asunto(s)
Aminoácidos/metabolismo , Hepacivirus/fisiología , Proteínas del Envoltorio Viral/metabolismo , Acoplamiento Viral , Sustitución de Aminoácidos , Aminoácidos/genética , Línea Celular , Análisis Mutacional de ADN , Hepacivirus/genética , Humanos , Modelos Biológicos , Mutagénesis Sitio-Dirigida , Receptores Depuradores de Clase B/metabolismo , Tetraspanina 28/metabolismo , Proteínas del Envoltorio Viral/genética , Internalización del Virus
8.
J Virol ; 90(7): 3745-59, 2016 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-26819303

RESUMEN

UNLABELLED: The hepatitis C virus (HCV) E2 envelope glycoprotein is crucial for virus entry into hepatocytes. A conserved region of E2 encompassing amino acids 412 to 423 (epitope I) and containing Trp420, a residue critical for virus entry, is recognized by several broadly neutralizing antibodies. Peptides embodying this epitope I sequence adopt a ß-hairpin conformation when bound to neutralizing monoclonal antibodies (MAbs) AP33 and HCV1. We therefore generated new mouse MAbs that were able to bind to a cyclic peptide containing E2 residues 412 to 422 (C-epitope I) but not to the linear counterpart. These MAbs bound to purified E2 with affinities of about 50 nM, but they were unable to neutralize virus infection. Structural analysis of the complex between C-epitope I and one of our MAbs (C2) showed that the Trp420 side chain is largely buried in the combining site and that the Asn417 side chain, which is glycosylated in E2 and solvent exposed in other complexes, is slightly buried upon C2 binding. Also, the orientation of the cyclic peptide in the antibody-combining site is rotated by 180° compared to the orientations of the other complexes. All these structural features, however, do not explain the lack of neutralization activity. This is instead ascribed to the high degree of selectivity of the new MAbs for the cyclic epitope and to their inability to interact with the epitope in more flexible and extended conformations, which recent data suggest play a role in the mechanisms of neutralization escape. IMPORTANCE: Hepatitis C virus (HCV) remains a major health care burden, affecting almost 3% of the global population. The conserved epitope comprising residues 412 to 423 of the viral E2 glycoprotein is a valid vaccine candidate because antibodies recognizing this region exhibit potent neutralizing activity. This epitope adopts a ß-hairpin conformation when bound to neutralizing MAbs. We explored the potential of cyclic peptides mimicking this structure to elicit anti-HCV antibodies. MAbs that specifically recognize a cyclic variant of the epitope bind to soluble E2 with a lower affinity than other blocking antibodies and do not neutralize virus. The structure of the complex between one such MAb and the cyclic epitope, together with new structural data showing the linear peptide bound to neutralizing MAbs in extended conformations, suggests that the epitope displays a conformational flexibility that contributes to neutralization escape. Such features can be of major importance for the design of epitope-based anti-HCV vaccines.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/aislamiento & purificación , Epítopos de Linfocito B/inmunología , Hepacivirus/inmunología , Anticuerpos contra la Hepatitis C/inmunología , Anticuerpos contra la Hepatitis C/aislamiento & purificación , Proteínas del Envoltorio Viral/inmunología , Animales , Anticuerpos Monoclonales/química , Anticuerpos contra la Hepatitis C/química , Ratones Endogámicos BALB C , Modelos Moleculares , Pruebas de Neutralización , Unión Proteica , Conformación Proteica , Proteínas del Envoltorio Viral/química
9.
J Virol ; 86(23): 12923-32, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22993159

RESUMEN

The E2 envelope glycoprotein of hepatitis C virus (HCV) binds to the host entry factor CD81 and is the principal target for neutralizing antibodies (NAbs). Most NAbs recognize hypervariable region 1 on E2, which undergoes frequent mutation, thereby allowing the virus to evade neutralization. Consequently, there is great interest in NAbs that target conserved epitopes. One such NAb is AP33, a mouse monoclonal antibody that recognizes a conserved, linear epitope on E2 and potently neutralizes a broad range of HCV genotypes. In this study, the X-ray structure of AP33 Fab in complex with an epitope peptide spanning residues 412 to 423 of HCV E2 was determined to 1.8 Å. In the complex, the peptide adopts a ß-hairpin conformation and docks into a deep binding pocket on the antibody. The major determinants of antibody recognition are E2 residues L413, N415, G418, and W420. The structure is compared to the recently described HCV1 Fab in complex with the same epitope. Interestingly, the antigen-binding sites of HCV1 and AP33 are completely different, whereas the peptide conformation is very similar in the two structures. Mutagenesis of the peptide-binding residues on AP33 confirmed that these residues are also critical for AP33 recognition of whole E2, confirming that the peptide-bound structure truly represents AP33 interaction with the intact glycoprotein. The slightly conformation-sensitive character of the AP33-E2 interaction was explored by cross-competition analysis and alanine-scanning mutagenesis. The structural details of this neutralizing epitope provide a starting point for the design of an immunogen capable of eliciting AP33-like antibodies.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Hepatitis C/prevención & control , Modelos Moleculares , Tetraspanina 28/inmunología , Proteínas del Envoltorio Viral/inmunología , Vacunas contra Hepatitis Viral/inmunología , Proteínas Virales/inmunología , Animales , Anticuerpos Neutralizantes/química , Cristalografía por Rayos X , Epítopos/genética , Ratones , Mutagénesis , Tetraspanina 28/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Proteínas Virales/metabolismo
10.
J Gen Virol ; 92(Pt 10): 2249-2261, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21697343

RESUMEN

Despite extensive research, many details about the structure and functions of hepatitis C virus (HCV) glycoproteins E1 and E2 are not fully understood, and their crystal structure remains to be determined. We applied linker-scanning mutagenesis to generate a panel of 34 mutants, each containing an insertion of 5 aa at a random position within the E1E2 sequence. The mutated glycoproteins were analysed by using a range of assays to identify regions critical for maintaining protein conformation, E1E2 complex assembly, CD81 receptor binding, membrane fusion and infectivity. The results, while supporting previously published data, provide several interesting new findings. Firstly, insertion at amino acid 587 or 596 reduced E1E2 heterodimerization without affecting reactivity with some conformation-sensitive mAbs or with CD81, thus implicating these residues in glycoprotein assembly. Secondly, insertions within a conserved region of E2, between amino acid residues 611 and 631, severely disrupted protein conformation and abrogated binding of all conformation-sensitive antibodies, suggesting that the structural integrity of this region is critical for the correct folding of E2. Thirdly, an insertion at Leu-682 specifically affected membrane fusion, providing direct evidence that the membrane-proximal 'stem' of E2 is involved in the fusion mechanism. Overall, our results show that the HCV glycoproteins generally do not tolerate insertions and that there are a very limited number of sites that can be changed without dramatic loss of function. Nevertheless, we identified two E2 insertion mutants, at amino acid residues 408 and 577, that were infectious in the murine leukemia virus-based HCV pseudoparticle system.


Asunto(s)
Mutagénesis Insercional/genética , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Antígenos CD/metabolismo , Línea Celular , Humanos , Fusión de Membrana , Modelos Moleculares , Mutagénesis Insercional/métodos , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Receptores Virales/metabolismo , Tetraspanina 28 , Proteínas del Envoltorio Viral/química
11.
J Virol ; 84(11): 5494-507, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20237087

RESUMEN

Cell culture-adaptive mutations within the hepatitis C virus (HCV) E2 glycoprotein have been widely reported. We identify here a single mutation (N415D) in E2 that arose during long-term passaging of HCV strain JFH1-infected cells. This mutation was located within E2 residues 412 to 423, a highly conserved region that is recognized by several broadly neutralizing antibodies, including the mouse monoclonal antibody (MAb) AP33. Introduction of N415D into the wild-type (WT) JFH1 genome increased the affinity of E2 to the CD81 receptor and made the virus less sensitive to neutralization by an antiserum to another essential entry factor, SR-BI. Unlike JFH1(WT), the JFH1(N415D) was not neutralized by AP33. In contrast, it was highly sensitive to neutralization by patient-derived antibodies, suggesting an increased availability of other neutralizing epitopes on the virus particle. We included in this analysis viruses carrying four other single mutations located within this conserved E2 region: T416A, N417S, and I422L were cell culture-adaptive mutations reported previously, while G418D was generated here by growing JFH1(WT) under MAb AP33 selective pressure. MAb AP33 neutralized JFH1(T416A) and JFH1(I422L) more efficiently than the WT virus, while neutralization of JFH1(N417S) and JFH1(G418D) was abrogated. The properties of all of these viruses in terms of receptor reactivity and neutralization by human antibodies were similar to JFH1(N415D), highlighting the importance of the E2 412-423 region in virus entry.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Hepacivirus/inmunología , Mutación , Receptores Virales/metabolismo , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/fisiología , Secuencia Conservada/genética , Humanos , Internalización del Virus
12.
Protein Cell ; 1(7): 664-74, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21203938

RESUMEN

Mannan-binding lectin (MBL) is a soluble innate immune protein that binds to glycosylated targets. MBL acts as an opsonin and activates complement, contributing to the destruction and clearance of infecting microorganisms. Hepatitis C virus (HCV) encodes two envelope glycoproteins E1 and E2, expressed as non-covalent E1/E2 heterodimers in the viral envelope. E1 and E2 are potential ligands for MBL. Here we describe an analysis of the interaction between HCV and MBL using recombinant soluble E2 ectodomain fragment, the full-length E1/E2 heterodimer, expressed in vitro, and assess the effect of this interaction on virus entry. A binding assay using antibody capture of full length E1/E2 heterodimers was used to demonstrate calcium dependent, saturating binding of MBL to HCV glycoproteins. Competition with various saccharides further confirmed that the interaction was via the lectin domain of MBL. MBL binds to E1/E2 representing a broad range of virus genotypes. MBL was shown to neutralize the entry into Huh-7 cells of HCV pseudoparticles (HCVpp) bearing E1/E2 from a wide range of genotypes. HCVpp were neutralized to varying degrees. MBL was also shown to neutralize an authentic cell culture infectious virus, strain JFH-1 (HCVcc). Furthermore, binding of MBL to E1/E2 was able to activate the complement system via MBL-associated serine protease 2. In conclusion, MBL interacts directly with HCV glycoproteins, which are present on the surface of the virion, resulting in neutralization of HCV particles.


Asunto(s)
Hepacivirus/fisiología , Lectina de Unión a Manosa/metabolismo , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , Proteínas del Envoltorio Viral/metabolismo , Unión Competitiva , Glicosilación , Hepacivirus/genética , Hepacivirus/patogenicidad , Humanos , Monosacáridos/metabolismo , Unión Proteica , Multimerización de Proteína , Células Tumorales Cultivadas , Virión/patogenicidad , Virión/fisiología , Internalización del Virus
13.
J Gen Virol ; 91(Pt 1): 122-32, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19793905

RESUMEN

The cellular DEAD-box protein DDX3 was recently shown to be essential for hepatitis C virus (HCV) replication. Prior to that, we had reported that HCV core binds to DDX3 in yeast-two hybrid and transient transfection assays. Here, we confirm by co-immunoprecipitation that this interaction occurs in cells replicating the JFH1 virus. Consistent with this result, immunofluorescence staining of infected cells revealed a dramatic redistribution of cytoplasmic DDX3 by core protein to the virus assembly sites around lipid droplets. Given this close association of DDX3 with core and lipid droplets, and its involvement in virus replication, we investigated the importance of this host factor in the virus life cycle. Mutagenesis studies located a single amino acid in the N-terminal domain of JFH1 core that when changed to alanine significantly abrogated this interaction. Surprisingly, this mutation did not alter infectious virus production and RNA replication, indicating that the core-DDX3 interaction is dispensable in the HCV life cycle. Consistent with previous studies, siRNA-led knockdown of DDX3 lowered virus production and RNA replication levels of both WT JFH1 and the mutant virus unable to bind DDX3. Thus, our study shows for the first time that the requirement of DDX3 for HCV replication is unrelated to its interaction with the viral core protein.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Hepacivirus/fisiología , Interacciones Huésped-Patógeno , Proteínas del Núcleo Viral/metabolismo , Replicación Viral , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Línea Celular , ARN Helicasas DEAD-box/antagonistas & inhibidores , Técnicas de Silenciamiento del Gen , Humanos , Inmunoprecipitación , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica , Mapeo de Interacción de Proteínas , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
14.
J Gen Virol ; 90(Pt 1): 48-58, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19088272

RESUMEN

Hepatitis C virus (HCV) infects cells by the direct uptake of cell-free virus following virus engagement with specific cell receptors such as CD81. Recent data have shown that HCV is also capable of direct cell-to-cell transmission, although the role of CD81 in this process is disputed. Here, we generated cell culture infectious strain JFH1 HCV (HCVcc) genomes carrying an alanine substitution of E2 residues W529 or D535 that are critical for binding to CD81 and infectivity. Co-cultivation of these cells with naïve cells expressing enhanced green fluorescent protein (EGFP) resulted in a small number of cells co-expressing both EGFP and HCV NS5A, showing that the HCVcc mutants are capable of cell-to-cell spread. In contrast, no cell-to-cell transmission from JFH1(DeltaE1E2)-transfected cells occurred, indicating that the HCV glycoproteins are essential for this process. The frequency of cell-to-cell transmission of JFH1(W529A) was unaffected by the presence of neutralizing antibodies that inhibit E2-CD81 interactions. By using cell lines that expressed little or no CD81 and that were refractive to infection with cell-free virus, we showed that the occurrence of viral cell-to-cell transmission is not influenced by the levels of CD81 on either donor or recipient cells. Thus, our results show that CD81 plays no role in the cell-to-cell spread of HCVcc and that this mode of transmission is shielded from neutralizing antibodies. These data suggest that therapeutic interventions targeting the entry of cell-free HCV may not be sufficient in controlling an ongoing chronic infection, but need to be complemented by additional strategies aimed at disrupting direct cell-to-cell viral transmission.


Asunto(s)
Antígenos CD/fisiología , Hepacivirus/fisiología , Hepatocitos/virología , Receptores Virales/fisiología , Sustitución de Aminoácidos/genética , Anticuerpos Antivirales/inmunología , Línea Celular Tumoral , Hepacivirus/genética , Humanos , Mutagénesis Sitio-Dirigida , Pruebas de Neutralización , Tetraspanina 28 , Proteínas del Envoltorio Viral/genética , Replicación Viral
15.
Hepatology ; 48(6): 1779-90, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18828153

RESUMEN

UNLABELLED: The hepatitis C virus (HCV) p7 protein plays a critical role during particle formation in cell culture and is required for virus replication in chimpanzees. The discovery that it displayed cation channel activity in vitro led to its classification within the "viroporin" family of virus-coded ion channel proteins, which includes the influenza A virus (IAV) M2 protein. Like M2, p7 was proposed as a potential target for much needed new HCV therapies, and this was supported by our finding that the M2 inhibitor, amantadine, blocked its activity in vitro. Since then, further compounds have been shown to inhibit p7 function but the relationship between inhibitory effects in vitro and efficacy against infectious virus is controversial. Here, we have sought to validate multiple p7 inhibitor compounds using a parallel approach combining the HCV infectious culture system and a rapid throughput in vitro assay for p7 function. We identify a genotype-dependent and subtype-dependent sensitivity of HCV to p7 inhibitors, in which results in cell culture largely mirror the sensitivity of recombinant protein in vitro; thus building separate sensitivity profiles for different p7 sequences. Inhibition of virus entry also occurred, suggesting that p7 may be a virion component. Second site effects on both cellular and viral processes were identified for several compounds in addition to their efficacy against p7 in vitro. Nevertheless, for some compounds antiviral effects were specific to a block of ion channel function. CONCLUSION: These data validate p7 inhibitors as prototype therapies for chronic HCV disease. (HEPATOLOGY 2008;48:1779-1790.).


Asunto(s)
Antivirales/farmacología , Hepacivirus/efectos de los fármacos , Hepacivirus/genética , Proteínas Virales/antagonistas & inhibidores , Proteínas Virales/genética , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/farmacología , 1-Desoxinojirimicina/uso terapéutico , Amantadina/farmacología , Amantadina/uso terapéutico , Secuencia de Aminoácidos , Antivirales/uso terapéutico , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/virología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Genotipo , Hepatitis C/tratamiento farmacológico , Humanos , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/virología , Datos de Secuencia Molecular , Rimantadina/farmacología , Rimantadina/uso terapéutico , Proteínas Virales/análisis , Replicación Viral/efectos de los fármacos
16.
Gastroenterology ; 135(5): 1719-1728.e1, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18718838

RESUMEN

BACKGROUND & AIMS: Hepatitis C virus (HCV) is a leading cause of chronic hepatitis worldwide. Viral attachment and entry, representing the first steps of virus-host cell interactions, are major targets of adaptive host cell defenses. The mechanisms of antibody-mediated neutralization by host neutralizing responses in HCV infection are only poorly understood. Retroviral HCV pseudotypes (HCVpp) and recombinant cell culture-derived HCV (HCVcc) have been successfully used to study viral entry and antibody-mediated neutralization. METHODS: In this study, we used these model systems to investigate the mechanism of antibody-mediated neutralization by monoclonal antienvelope antibodies and polyclonal anti-HCV immunoglobulins purified from HCV-infected patients. RESULTS: Using a panel of monoclonal antienvelope antibodies, we identified an epitope within the E1 glycoprotein targeted by human neutralizing antibodies during postbinding events. Interestingly, we observed that host neutralizing responses in the majority of HCV-infected individuals include antibodies targeting HCV entry after binding of the virus to the target cell membrane. Using a kinetic assay based on HCVpp and HCVcc entry, we demonstrate that purified antiviral immunoglobulins derived from individual HCV-infected patients appear to inhibit HCV infection at an entry step closely linked to CD81 and scavenger receptor BI (SR-BI). CONCLUSIONS: Our results indicate that host neutralizing responses in HCV-infected patients target viral entry after HCV binding most likely related to HCV-CD81, and HCV-SR-BI interactions, as well as membrane fusion. These findings have implications not only for the understanding of the pathogenesis of HCV infection but also for the design of novel immunotherapeutic and preventive strategies.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antígenos CD/inmunología , Hepacivirus/inmunología , Anticuerpos contra la Hepatitis C/inmunología , Hepatitis C Crónica/tratamiento farmacológico , Fusión de Membrana/efectos de los fármacos , Receptores Depuradores de Clase B/inmunología , Adulto , Anciano , Anticuerpos Antiidiotipos/inmunología , Antígenos CD/efectos de los fármacos , Antígenos CD/metabolismo , Células Cultivadas , Hepatitis C Crónica/inmunología , Hepatitis C Crónica/virología , Humanos , Técnicas para Inmunoenzimas , Inmunoglobulina G/inmunología , Persona de Mediana Edad , Receptores Virales , Receptores Depuradores de Clase B/efectos de los fármacos , Receptores Depuradores de Clase B/metabolismo , Tetraspanina 28 , Proteínas del Envoltorio Viral/efectos de los fármacos , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/metabolismo
17.
J Gen Virol ; 89(Pt 3): 653-659, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18272755

RESUMEN

The humoral response to hepatitis C virus (HCV) may contribute to controlling infection. We previously isolated human monoclonal antibodies to conformational epitopes on the HCV E2 glycoprotein. Here, we report on their ability to inhibit infection by retroviral pseudoparticles incorporating a panel of full-length E1E2 clones representing the full spectrum of genotypes 1-6. We identified one antibody, CBH-5, that was capable of neutralizing every genotype tested. It also potently inhibited chimeric cell culture-infectious HCV, which had genotype 2b envelope proteins in a genotype 2a (JFH-1) background. Analysis using a panel of alanine-substitution mutants of HCV E2 revealed that the epitope of CBH-5 includes amino acid residues that are required for binding of E2 to CD81, a cellular receptor essential for virus entry. This suggests that CBH-5 inhibits HCV infection by competing directly with CD81 for a binding site on E2.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos contra la Hepatitis C/inmunología , Proteínas del Envoltorio Viral/inmunología , Antígenos CD , Línea Celular , Epítopos/química , Epítopos/inmunología , Genotipo , Hepacivirus/clasificación , Hepacivirus/genética , Hepacivirus/inmunología , Hepacivirus/patogenicidad , Humanos , Pruebas de Neutralización , Retroviridae/genética , Retroviridae/inmunología , Tetraspanina 28 , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Virión/genética , Virión/inmunología , Virión/metabolismo
18.
J Virol ; 82(2): 1047-52, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17989176

RESUMEN

Identification of anti-hepatitis C virus (anti-HCV) human antibody clones with broad neutralizing activity is important for a better understanding of the interplay between the virus and host and for the design of an effective passive immunotherapy and an effective vaccine. We report the identification of a human monoclonal Fab (e137) able to bind the HCV E2 glycoprotein of all HCV genotypes but genotype 5. The results of antibody competition assays and testing the reactivity to alanine mutant E2 proteins confirmed that the e137 epitope includes residues (T416, W420, W529, G530, and D535) highly conserved across all HCV genotypes. Fab e137 neutralized HCV pseudoparticles bearing genotype 1a, 1b, and 4 E1-E2 proteins and to a lesser extent, genotype 2b. Fab e137 was also able to inhibit cell culture-grown HCV (genotype 2a). These data indicate that broadly cross-reacting and cross-neutralizing antibodies are generated during HCV infection.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Hepacivirus/inmunología , Anticuerpos contra la Hepatitis C/inmunología , Proteínas del Envoltorio Viral/inmunología , Anticuerpos Monoclonales/aislamiento & purificación , Reacciones Cruzadas , Mapeo Epitopo , Anticuerpos contra la Hepatitis C/aislamiento & purificación , Humanos , Fragmentos Fab de Inmunoglobulinas/inmunología , Fragmentos Fab de Inmunoglobulinas/aislamiento & purificación , Pruebas de Neutralización
19.
J Gen Virol ; 88(Pt 11): 2991-3001, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17947521

RESUMEN

Hepatitis C virus (HCV) is a major cause of liver disease worldwide and there is a pressing need for the development of a preventative vaccine as well as new treatments. It was recently demonstrated that the mouse monoclonal antibody (mAb) AP33 potently neutralizes infectivity of HCV pseudoparticles (HCVpp) carrying E1E2 envelopes representative of all of the major genotypes of HCV. This study determined the prevalence of human serum antibodies reactive to the region of HCV E2 recognized by AP33. Antibodies recognizing this region were present in less than 2.5 % of sera obtained from individuals with chronic HCV infection. A similar prevalence was found in a smaller cohort of individuals who had experienced an acute infection, suggesting that AP33-like antibodies do not play a major role in natural clearance of HCV infection. Sera exhibited different patterns of reactivity to a panel of peptides representing circulating variants, highlighting the presence of distinct epitopes in this region. Only two sera contained antibodies that could recognize a specific AP33-reactive peptide mimotope. AP33-like antibodies made a measurable contribution to the ability of these sera to inhibit E2-CD81 interaction, but not to the overall neutralization of cell entry. Together, these data show that antibodies to the AP33 epitope are not commonly generated during natural infection and that generation of such antibodies via vaccination may require modified immunogens to focus the generation of specific antibodies. Importantly, individuals harbouring AP33-like antibodies are an important potential source of human mAbs for future therapeutic development.


Asunto(s)
Epítopos/inmunología , Hepacivirus/inmunología , Anticuerpos contra la Hepatitis C/sangre , Hepatitis C/inmunología , Proteínas del Envoltorio Viral/inmunología , Formación de Anticuerpos , Antígenos CD/inmunología , Antígenos CD/metabolismo , Humanos , Unión Proteica , Tetraspanina 28 , Proteínas del Envoltorio Viral/metabolismo
20.
J Virol ; 81(16): 8601-12, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17553880

RESUMEN

Although in vitro replication of the hepatitis C virus (HCV) JFH1 clone of genotype 2a (HCVcc) has been developed, a robust cell culture system for the 1a and 1b genotypes, which are the most prevalent viruses in the world and resistant to interferon therapy, has not yet been established. As a surrogate virus system, pseudotype viruses transiently bearing HCV envelope proteins based on the vesicular stomatitis virus (VSV) and retrovirus have been developed. Here, we have developed a replication-competent recombinant VSV with a genome encoding unmodified HCV E1 and E2 proteins in place of the VSV envelope protein (HCVrv) in human cell lines. HCVrv and a pseudotype VSV bearing the unmodified HCV envelope proteins (HCVpv) generated in 293T or Huh7 cells exhibited high infectivity in Huh7 cells. Generation of infectious HCVrv was limited in some cell lines examined. Furthermore, HCVrv but not HCVpv was able to propagate and form foci in Huh7 cells. The infection of Huh7 cells with HCVpv and HCVrv was neutralized by anti-hCD81 and anti-E2 antibodies and by sera from chronic HCV patients. The infectivity of HCVrv was inhibited by an endoplasmic reticulum alpha-glucosidase inhibitor, N-(n-nonyl) deoxynojirimycin (Nn-DNJ), but not by a Golgi mannosidase inhibitor, deoxymannojirimycin. Focus formation of HCVrv in Huh7 cells was impaired by Nn-DNJ treatment. These results indicate that the HCVrv developed in this study can be used to study HCV envelope proteins with respect to not only the biological functions in the entry process but also their maturation step.


Asunto(s)
Hepacivirus/fisiología , Modelos Biológicos , Virus de la Estomatitis Vesicular Indiana/genética , Proteínas del Envoltorio Viral/metabolismo , Internalización del Virus , Animales , Antígenos CD/metabolismo , Línea Celular , Inhibidores Enzimáticos/farmacología , Inhibidores de Glicósido Hidrolasas , Hepacivirus/efectos de los fármacos , Anticuerpos contra la Hepatitis C/farmacología , Humanos , Macrólidos/farmacología , Tetraspanina 28 , Proteínas del Envoltorio Viral/genética , Internalización del Virus/efectos de los fármacos , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA