Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
2.
J Mol Med (Berl) ; 101(11): 1465-1475, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37755493

RESUMEN

Microfluidic platforms for clinical use are a promising translational strategy for cancer research specially for drug screening. Identifying cancer stem cells (CSC) using sphere culture techniques in microfluidic devices (MDs) showed to be better reproducing physiological responses than other in vitro models and allow the optimization of samples and reagents. We evaluated individual sphere proliferation and stemness toward chemotherapeutic treatment (CT) with doxorubicin and cisplatin in bladder cancer cell lines (MB49-I and J82) cultured in MDs used as CSC treatment response platform. Our results confirm the usefulness of this device to evaluate the CT effect in sphere-forming efficiency, size, and growth rate from individual spheres within MDs and robust information comparable to conventional culture plates was obtained. The expression of pluripotency genetic markers (Oct4, Sox2, Nanog, and CD44) could be analyzed by qPCR and immunofluorescence in spheres growing directly in MDs. MDs are a suitable platform for sphere isolation from tumor samples and can provide information about CT response. Microfluidic-based CSC studies could provide information about treatment response of cancer patients from small samples and can be a promising tool for CSC-targeted specific treatment with potential in precision medicine. KEY MESSAGES: We have designed a microfluidic platform for CSC enriched culture by tumor sphere formation. Using MDs, we could quantify and determine sphere response after CT using murine and human cell lines as a proof of concept. MDs can be used as a tumor-derived sphere isolation platform to test the effect of antitumoral compounds in sphere proliferation.


Asunto(s)
Sistemas de Liberación de Medicamentos , Neoplasias , Humanos , Animales , Ratones , Línea Celular Tumoral , Células Madre Neoplásicas/metabolismo , Neoplasias/metabolismo
3.
Micromachines (Basel) ; 13(5)2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35630117

RESUMEN

Conventional manufacturing methods for polydimethylsiloxane (PDMS)-based microdevices require multiple steps and elements that increase cost and production time. Also, these PDMS microdevices are mostly limited to single use, and it is difficult to recover the contents inside the microchannels or perform advanced microscopy visualization due to their irreversible sealing method. Herein, we developed a novel manufacturing method based on polymethylmethacrylate (PMMA) plates adjusted using a mechanical pressure-based system. One conformation of the PMMA plate assembly system allows the reproducible manufacture of PDMS replicas, reducing the cost since a precise amount of PDMS is used, and the PDMS replicas show uniform dimensions. A second form of assembling the PMMA plates permits pressure-based sealing of the PDMS layer with a glass base. By reversibly sealing the microdevice without using plasma for bonding, we achieve chip on/off configurations, which allow the user to open and close the device and reuse it in an easy-to-use way. No deformation was observed on the structures of the PDMS microchannels when a range of 10 to 18 kPa pressure was applied using the technique. Furthermore, the functionality of the proposed system was successfully validated by the generation of microdroplets with reused microdevices via three repetitions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA