Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Neurobiol ; 58(9): 4639-4651, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34155583

RESUMEN

The effects of the consumption of high-fat diets (HFD) have been studied to unravel the molecular pathways they are altering in order to understand the link between increased caloric intake, metabolic diseases, and the risk of cognitive dysfunction. The saturated fatty acid, palmitic acid (PA), is the main component of HFD and it has been found increased in the circulation of obese and diabetic people. In the central nervous system, PA has been associated with inflammatory responses in astrocytes, but the effects on neurons exposed to it have not been largely investigated. Given that PA affects a variety of metabolic pathways, we aimed to analyze the transcriptomic profile activated by this fatty acid to shed light on the mechanisms of neuronal dysfunction. In the current study, we profiled the transcriptome response after PA exposition at non-toxic doses in primary hippocampal neurons. Gene ontology and Reactome pathway analysis revealed a pattern of gene expression which is associated with inflammatory pathways, and importantly, with the activation of lipid metabolism that is considered not very active in neurons. Validation by quantitative RT-PCR (qRT-PCR) of Hmgcs2, Angptl4, Ugt8, and Rnf145 support the results obtained by RNAseq. Overall, these findings suggest that neurons are able to respond to saturated fatty acids changing the expression pattern of genes associated with inflammatory response and lipid utilization that may be involved in the neuronal damage associated with metabolic diseases.


Asunto(s)
Hipocampo/efectos de los fármacos , Inflamación/genética , Metabolismo de los Lípidos/efectos de los fármacos , Neuronas/efectos de los fármacos , Ácido Palmítico/farmacología , Animales , Hipocampo/metabolismo , Inflamación/metabolismo , Neuronas/metabolismo , Ratas , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Transcriptoma
2.
Bone Joint Res ; 6(10): 577-583, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29054990

RESUMEN

OBJECTIVES: To assess the accuracy of patient-specific instruments (PSIs) versus standard manual technique and the precision of computer-assisted planning and PSI-guided osteotomies in pelvic tumour resection. METHODS: CT scans were obtained from five female cadaveric pelvises. Five osteotomies were designed using Mimics software: sacroiliac, biplanar supra-acetabular, two parallel iliopubic and ischial. For cases of the left hemipelvis, PSIs were designed to guide standard oscillating saw osteotomies and later manufactured using 3D printing. Osteotomies were performed using the standard manual technique in cases of the right hemipelvis. Post-resection CT scans were quantitatively analysed. Student's t-test and Mann-Whitney U test were used. RESULTS: Compared with the manual technique, PSI-guided osteotomies improved accuracy by a mean 9.6 mm (p < 0.008) in the sacroiliac osteotomies, 6.2 mm (p < 0.008) and 5.8 mm (p < 0.032) in the biplanar supra-acetabular, 3 mm (p < 0.016) in the ischial and 2.2 mm (p < 0.032) and 2.6 mm (p < 0.008) in the parallel iliopubic osteotomies, with a mean linear deviation of 4.9 mm (p < 0.001) for all osteotomies. Of the manual osteotomies, 53% (n = 16) had a linear deviation > 5 mm and 27% (n = 8) were > 10 mm. In the PSI cases, deviations were 10% (n = 3) and 0 % (n = 0), respectively. For angular deviation from pre-operative plans, we observed a mean improvement of 7.06° (p < 0.001) in pitch and 2.94° (p < 0.001) in roll, comparing PSI and the standard manual technique. CONCLUSION: In an experimental study, computer-assisted planning and PSIs improved accuracy in pelvic tumour resections, bringing osteotomy results closer to the parameters set in pre-operative planning, as compared with standard manual techniques.Cite this article: A. Sallent, M. Vicente, M. M. Reverté, A. Lopez, A. Rodríguez-Baeza, M. Pérez-Domínguez, R. Velez. How 3D patient-specific instruments improve accuracy of pelvic bone tumour resection in a cadaveric study. Bone Joint Res 2017;6:577-583. DOI: 10.1302/2046-3758.610.BJR-2017-0094.R1.

3.
Brain Res ; 1636: 193-199, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26874070

RESUMEN

Recently it has been reported that prolactin (PRL) exerts a neuroprotective effect against excitotoxicity in hippocampus in the rat in vivo models. However, the exact mechanism by which PRL mediates this effect is not completely understood. The aim of our study was to assess whether prolactin exerts neuroprotection against excitotoxicity in an in vitro model using primary cell cultures of hippocampal neurons, and to determine whether this effect is mediated via the prolactin receptor (PRLR). Primary cell cultures of rat hippocampal neurons were used in all experiments, gene expression was evaluated by RT-qPCR, and protein expression was assessed by Western blot analysis and immunocytochemistry. Cell viability was assessed by using the MTT method. The results demonstrated that PRL treatment of neurons from primary cultures did not modify cell viability, but that it exerted a neuroprotective effect, with cells treated with PRL showing a significant increase of viability after glutamate (Glu)--induced excitotoxicity as compared with neurons treated with Glu alone. Cultured neurons expressed mRNA for both PRL and its receptor (PRLR), and both PRL and PRLR expression levels changed after the excitotoxic insult. Interestingly, the PRLR protein was detected as two main isoforms of 100 and 40 kDa as compared with that expressed in hypothalamic cells, which was present only as a 30 kDa variant. On the other hand, PRL was not detected in neuron cultures, either by western blot or by immunohistochemistry. Neuroprotection induced by PRL was significantly blocked by specific oligonucleotides against PRLR, thus suggesting that the PRL role is mediated by its receptor expressed in these neurons. The overall results indicated that PRL induces neuroprotection in neurons from primary cell cultures.


Asunto(s)
Hipocampo/citología , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Prolactina/farmacología , Receptores de Prolactina/metabolismo , Análisis de Varianza , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Embrión de Mamíferos , Agonistas de Aminoácidos Excitadores/toxicidad , Regulación de la Expresión Génica/efectos de los fármacos , Ácido Glutámico/toxicidad , Oligonucleótidos/farmacología , Prolactina/genética , Prolactina/metabolismo , ARN Mensajero/metabolismo , Ratas , Receptores de Prolactina/genética
5.
Neurochem Res ; 39(7): 1219-31, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24706094

RESUMEN

Thrombin effect increasing swelling-induced glutamate efflux was examined in cultured cortical astrocytes, cerebellar granule neurons (CGN), hippocampal and cortical neurons. Hypotonic glutamate efflux (monitored by D-[(3)H]aspartate) from cortical astrocytes was increased by thrombin (5 U/mL) to reach 16% of the cell pool in 5 min. Thrombin had lower effects in CGN, and marginal effects in hippocampal and cortical neurons. These differences were related to the magnitude of thrombin-evoked cytosolic calcium rise. The protease-activated receptor 1 is expressed in astrocytes and neurons. In astrocytes exposed to chemical ischemia (sodium iodoacetate plus sodium azide) D-[(3)H]aspartate release showed a first phase (20-40 min) of initial low efflux which progressively increases; and a second phase (40-60 min) of larger efflux coincident with cell swelling. Efflux at the first phase was 52% inhibited by the glutamate transporter blocker DL-threo-ß-benzyloxyaspartic-acid (TBOA) and 11% by the volume-sensitive pathway blocker phloretin. At the second phase, efflux was reduced 52 and 38% respectively, by these blockers. In CGN D-[(3)H]aspartate efflux increased sharply and then decreased. This efflux was 32% reduced by calcium omission, 46% by TBOA and 32% by 4-[(2-butyl-6,7dichloro-2-cyclopentyl-2,3-dihydro-1oxo-1H-inden-5-yl)oxy] butanoic-acid. Thrombin enhanced this release by 32%. Ischemic treatment increased astrocyte mortality from 4% in controls to 39 and 61% in ischemia and ischemia plus thrombin, respectively. Cell death was prevented by phloretin. CGN viability was unaffected by the treatment. These results suggest that coincidence of swelling and thrombin during ischemia elevates extracellular glutamate prominently from astrocyte efflux, which may endanger neurons in vivo.


Asunto(s)
Ácido Aspártico/metabolismo , Astrocitos/metabolismo , Hiponatremia/metabolismo , Neuronas/metabolismo , Trombina/toxicidad , Tritio/metabolismo , Animales , Astrocitos/efectos de los fármacos , Hipoxia de la Célula/efectos de los fármacos , Hipoxia de la Célula/fisiología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Neuronas/efectos de los fármacos , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA