Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Bioengineering (Basel) ; 11(8)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39199709

RESUMEN

Background: File fracture during root canal treatment in endodontics is a major concern for clinicians. The strength of the file is strongly dependent on its geometry, material, and working conditions; finite element simulations are used to understand these failure mechanisms. One limitation of the models used for these simulations is the approximate geometric representation typically obtained by rotating and scaling a specific cross-section shape along the file length. Given the influence of file geometry on file strength, a more realistic representation based on the manufacturing method is needed. Methods: A computerized method was developed to generate the file geometry by simulating the flute grinding manufacturing process. This method generates the 3D geometry of the file starting from a blank and reproducing the motions of the file and grinding wheel. Results: The cross-section of the resulting geometry does not involve simple rotation and scaling but changes from the shank to the tip. The tilt angle of the grinding wheel affects the final geometry, thus altering the convexity of the cross-section. Several other parameters, such as the pitch and the radius of the grinding disc tip, impact the final geometry. Conclusions: The proposed computational method allows for the generation of endodontic file geometries that match those produced via the actual flute grinding method. This tool may help researchers and tool designers in the preparation of finite element models to assess the strength of realistic files.

3.
Biomimetics (Basel) ; 8(2)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37366814

RESUMEN

Automation of wrist rotations in upper limb prostheses allows simplification of the human-machine interface, reducing the user's mental load and avoiding compensatory movements. This study explored the possibility of predicting wrist rotations in pick-and-place tasks based on kinematic information from the other arm joints. To do this, the position and orientation of the hand, forearm, arm, and back were recorded from five subjects during transport of a cylindrical and a spherical object between four different locations on a vertical shelf. The rotation angles in the arm joints were obtained from the records and used to train feed-forward neural networks (FFNNs) and time-delay neural networks (TDNNs) in order to predict wrist rotations (flexion/extension, abduction/adduction, and pronation/supination) based on the angles at the elbow and shoulder. Correlation coefficients between actual and predicted angles of 0.88 for the FFNN and 0.94 for the TDNN were obtained. These correlations improved when object information was added to the network or when it was trained separately for each object (0.94 for the FFNN, 0.96 for the TDNN). Similarly, it improved when the network was trained specifically for each subject. These results suggest that it would be feasible to reduce compensatory movements in prosthetic hands for specific tasks by using motorized wrists and automating their rotation based on kinematic information obtained with sensors appropriately positioned in the prosthesis and the subject's body.

4.
Biomimetics (Basel) ; 7(4)2022 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-36546933

RESUMEN

The advent of 3D printing technologies has enabled the development of low-cost prosthetic underactuated hands, with cables working as tendons for flexion. Despite the particular relevance to human grasp, its conception in prosthetics is based on vague intuitions of the designers due to the lack of studies on its relevance to the functionality and performance of the device. In this work, some criteria for designers are provided regarding the carpometacarpal joint of the thumb in these devices. To this end, we studied four prosthetic hands of similar characteristics with the motion of abduction/adduction of the thumb resolved in three different ways: fixed at a certain abduction, coupled with the motion of flexion/extension, and actuated independently of the flexion/extension. The functionality and performance of the hands were assessed for the basic grasps using the Anthropomorphic Hand Assessment Protocol (AHAP) and a reduced version of the Southampton Hand Assessment Procedure (SHAP). As a general rule, it seems desirable that thumb adduction/abduction is performed independently of flexion/extension, although this adds one degree of control. If having this additional degree of control is beyond debate, coupled flexion/extension and adduction/abduction should be avoided in favour of the thumb having a fixed slight palmar abduction.

5.
J Clin Med ; 11(9)2022 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-35566767

RESUMEN

In this article, the effects of cross-section and pitch on the mechanical response of NiTi endodontic files is studied by means of finite element analyses. The study was conducted over a set of eight endodontic rotary files, whose geometry was obtained from combinations of two cross-sections (square and triangular) and four pitches. Each file was subjected to bending and torsional analyses, simulating the testing conditions indicated in the ISO 3630 Standard, in order to assess their stiffness and mechanical strength. The results indicate that endodontic files with a square cross-section have double the stiffness of those with triangular cross-sections, both in terms of bending and torsion. For both loading modes, endodontic files with a triangular cross-section can undergo larger deformations before overload failure than those with a square cross-section: up to 20% more in bending and 40% in torsion. Moreover, under equivalent boundary conditions, endodontic files with triangular cross-sections present a higher fatigue life than those with square cross-sections: up to more than 300% higher for small pitches. The effect of pitch on the stiffness and strength of the file is smaller than that of the cross-section shape, but smaller pitches could be beneficial when using a triangular cross-section, as they increase the bending flexibility, fatigue life, and torsion stiffness. These results suggest a clinical recommendation for the use of files with a triangular-shaped cross-section and a small pitch in order to minimize ledging and maximize fatigue life. Finally, in this study, we reveal the sensitivity of the orientation of files with respect to the bending direction, which must be taken into account when designing, reporting, and interpreting test results under such loading conditions.

6.
J Clin Med ; 10(23)2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34884394

RESUMEN

This article describes a numerical procedure for estimating the fatigue life of NiTi endodontic rotary files. An enhanced finite element model reproducing the interaction of the endodontic file rotating inside the root canal was developed, which includes important phenomena that allowed increasing the degree of realism of the simulation. A method based on the critical plane approach was proposed for extracting significant strain results from finite element analysis, which were used in combination with the Coffin-Manson relation to predict the fatigue life of the NiTi rotary files. The proposed procedure is illustrated with several numerical examples in which different combinations of endodontic rotary files and root canal geometries were investigated. By using these analyses, the effect of the radius of curvature and the angle of curvature of the root canal on the fatigue life of the rotary files was analysed. The results confirm the significant influence of the root canal geometry on the fatigue life of the NiTi rotary files and reveal the higher importance of the radius of curvature with respect to the angle of curvature of the root canal.

7.
Sensors (Basel) ; 21(8)2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33917212

RESUMEN

Successful grasping with multi-fingered prosthetic or robotic hands remains a challenge to be solved for the effective use of these hands in unstructured environments. To this end, currently available tactile sensors need to improve their sensitivity, robustness, and spatial resolution, but a better knowledge of the distribution of contact forces in the human hand in grasping tasks is also necessary. The human tactile signatures can inform models for an efficient control of the artificial hands. In this study we present and analyze a dataset of tactile signatures of the human hand in twenty-one representative activities of daily living, obtained using a commercial high spatial resolution pressure sensor. The experiments were repeated for twenty-two subjects. The whole dataset includes more than one hundred million pressure data. The effect of the task and the subject on the grip force and the contribution to this grip force made by the different hand regions were analyzed. We also propose a method to effectively synchronize the measurements from different subjects and a method to represent the tactile signature of each task, highlighting the hand regions mainly involved in the task. The correlations between hand regions and between different tasks were also analyzed.


Asunto(s)
Actividades Cotidianas , Mano , Fuerza de la Mano , Derechos Humanos , Humanos , Tacto
8.
Front Neurorobot ; 14: 57, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32982713

RESUMEN

Affordable 3D-printed tendon-driven prosthetic hands are a rising trend because of their availability and easy customization. Nevertheless, comparative studies about the functionality of this kind of prostheses are lacking. The tradeoff between the number of actuators and the grasping ability of prosthetic hands is a relevant issue in their design. The analysis of synergies among fingers is a common method used to reduce dimensionality without any significant loss of dexterity. Therefore, the purpose of this study is to assess the functionality and motion synergies of different tendon-driven hands using an able-bodied adaptor. The use of this adaptor to control the hands by means of the fingers of healthy subjects makes it possible to take advantage of the human brain control while obtaining the synergies directly from the artificial hand. Four artificial hands (IMMA, Limbitless, Dextrus v2.0, InMoov) were confronted with the Anthropomorphic Hand Assessment Protocol, quantifying functionality and human-like grasping. Three subjects performed the tests by means of a specially designed able-bodied adaptor that allows each tendon to be controlled by a different human finger. The tendon motions were registered, and correlation and principal component analyses were used to obtain the motion synergies. The grasping ability of the analyzed hands ranged between 48 and 57% with respect to that of the human hand, with the IMMA hand obtaining the highest score. The effect of the subject on the grasping ability score was found to be non-significant. For all the hands, the highest tendon-pair synergies were obtained for pairs of long fingers and were greater for adjacent fingers. The principal component analysis showed that, for all the hands, two principal components explained close to or more than 80% of the variance. Several factors, such as the friction coefficient of the hand contact surfaces, limitations on the underactuation, and impairments for a correct thumb opposition need to be improved in this type of prostheses to increase their grasping stability. The principal components obtained in this study provide useful information for the design of transmission or control systems to underactuate these hands.

9.
Appl Bionics Biomech ; 2019: 7169034, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31481977

RESUMEN

The increasing development of anthropomorphic artificial hands makes necessary quick metrics that analyze their anthropomorphism. In this study, a human grasp experiment on the most important grasp types was undertaken in order to obtain an Anthropomorphism Index of Mobility (AIM) for artificial hands. The AIM evaluates the topology of the whole hand, joints and degrees of freedom (DoFs), and the possibility to control these DoFs independently. It uses a set of weighting factors, obtained from analysis of human grasping, depending on the relevance of the different groups of DoFs of the hand. The computation of the index is straightforward, making it a useful tool for analyzing new artificial hands in early stages of the design process and for grading human-likeness of existing artificial hands. Thirteen artificial hands, both prosthetic and robotic, were evaluated and compared using the AIM, highlighting the reasons behind their differences. The AIM was also compared with other indexes in the literature with more cumbersome computation, ranking equally different artificial hands. As the index was primarily proposed for prosthetic hands, normally used as nondominant hands in unilateral amputees, the grasp types selected for the human grasp experiment were the most relevant for the human nondominant hand to reinforce bimanual grasping in activities of daily living. However, it was shown that the effect of using the grasping information from the dominant hand is small, indicating that the index is also valid for evaluating the artificial hand as dominant and so being valid for bilateral amputees or robotic hands.

10.
Ergonomics ; 60(7): 957-966, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27616303

RESUMEN

Grip force and force sharing during two activities of daily living were analysed experimentally in 10 right-handed subjects. Four different bottles, filled to two different levels, were manipulated for two tasks: transporting and pouring. Each test subject's hand was instrumented with eight thin wearable force sensors. The grip force and force sharing were significantly different for each bottle model. Increasing the filling level resulted in an increase in grip force, but the ratio of grip force to load force was higher for lighter loads. The task influenced the force sharing but not the mean grip force. The contributions of the thumb and ring finger were higher in the pouring task, whereas the contributions of the palm and the index finger were higher in the transport task. Mean force sharing among fingers was 30% for index, 29% for middle, 22% for ring and 19% for little finger. Practitioner Summary: We analysed grip force and force sharing in two manipulation tasks with bottles: transporting and pouring. The objective was to understand the effects of the bottle features, filling level and task on the contribution of different areas of the hand to the grip force. Force sharing was different for each task and the bottles features affected to both grip force and force sharing.


Asunto(s)
Actividades Cotidianas , Fuerza de la Mano/fisiología , Análisis y Desempeño de Tareas , Adulto , Fenómenos Biomecánicos , Femenino , Dedos/fisiología , Mano/fisiología , Humanos , Masculino , Pulgar/fisiología , Torque
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA