Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 280(12): 11233-46, 2005 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-15634667

RESUMEN

The R2 protein subunit of class I ribonucleotide reductase (RNR) belongs to a structurally related family of oxygen bridged diiron proteins. In wild-type R2 of Escherichia coli, reductive cleavage of molecular oxygen by the diferrous iron center generates a radical on a nearby tyrosine residue (Tyr122), which is essential for the enzymatic activity of RNR, converting ribonucleotides into deoxyribonucleotides. In this work, we characterize the mutant E. coli protein R2-Y122H, where the radical site is substituted with a histidine residue. The x-ray structure verifies the mutation. R2-Y122H contains a novel stable paramagnetic center which we name H, and which we have previously proposed to be a diferric iron center with a strongly coupled radical, Fe(III)Fe(III)R.. Here we report a detailed characterization of center H, using 1H/2H -14N/15N- and 57Fe-ENDOR in comparison with the Fe(III)Fe(IV) intermediate X observed in the iron reconstitution reaction of R2. Specific deuterium labeling of phenylalanine residues reveals that the radical results from a phenylalanine. As Phe208 is the only phenylalanine in the ligand sphere of the iron site, and generation of a phenyl radical requires a very high oxidation potential, we propose that in Y122H residue Phe208 is hydroxylated, as observed earlier in another mutant (R2-Y122F/E238A), and further oxidized to a phenoxyl radical, which is coordinated to Fe1. This work demonstrates that small structural changes can redirect the reactivity of the diiron site, leading to oxygenation of a hydrocarbon, as observed in the structurally similar methane monoxygenase, and beyond, to formation of a stable iron-coordinated radical.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Ribonucleótido Reductasas/química , Espectroscopía de Resonancia por Spin del Electrón , Radicales Libres , Ligandos , Modelos Moleculares , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Tirosina , Difracción de Rayos X
2.
J Biol Chem ; 277(52): 50326-32, 2002 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-12384502

RESUMEN

Matrix metalloproteinases (MMPs) are involved in the remodeling processes of the extracellular matrix and the basement membrane. Most MMPs are composed of a regulatory, a catalytic, and a hemopexin subunit. In many tumors the expression of MMP-9 correlates with local tumor growth, invasion, and metastasis. To analyze the role of the hemopexin domain in these processes, the MMP-9 hemopexin domain (MMP-9-PEX) was expressed as a glutathione S-transferase fusion protein in Escherichia coli. After proteolytic cleavage, the isolated PEX domain was purified by size exclusion chromatography. In a zymography assay, MMP-9-PEX was able to inhibit MMP-9 activity. The association and dissociation rates for the interaction of MMP-9-PEX with gelatin were determined by plasmon resonance. From the measured rate constants, the dissociation constant was calculated to be K(d) = 2,4 x 10(-8) m, demonstrating a high affinity between MMP-9-PEX and gelatin. In Boyden chamber experiments the recombinant MMP-9-PEX was able to inhibit the invasion of melanoma cells secreting high amounts of MMP-9 in a dose-dependent manner. These data demonstrate for the first time that the hemopexin domain of MMP-9 has a high affinity binding site for gelatin, and the particular recombinant domain is able to block MMP-9 activity and tumor cell invasion. Because MMP-9 plays an important role in metastasis, this antagonistic effect may be utilized to design MMP inhibition-based cancer therapy.


Asunto(s)
Gelatina/metabolismo , Hemopexina/química , Metaloproteinasa 9 de la Matriz/química , Inhibidores de la Metaloproteinasa de la Matriz , Fragmentos de Péptidos/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células Cultivadas , Dicroismo Circular , Clonación Molecular , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Hemopexina/aislamiento & purificación , Cinética , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Datos de Secuencia Molecular , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/farmacología , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
3.
J Biol Inorg Chem ; 7(1-2): 74-82, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11862543

RESUMEN

Catalytically important free radicals in enzymes are generally formed at highly specific sites, but the specificity is often lost in point mutants where crucial residues have been changed. Among the transient free radicals earlier found in the Y122F mutant of protein R2 in Escherichia coli ribonucleotide reductase after reconstitution with Fe2+ and O2, two were identified as tryptophan radicals. A third radical has an axially symmetric EPR spectrum, and is shown here using 17O exchange and simulations of EPR spectra to be a peroxyl adduct radical. Reconstitution of other mutants of protein R2 (i.e. Y122F/W48Y and Y122F/W107Y) implicates W48 as the origin of the peroxyl adduct. The results indicate that peroxyl radicals form on primary transient radicals on surface residues such as W48, which is accessible to oxygen. However, the specificity of the reaction is not absolute since the single mutant W48Y also gives rise to a peroxyl adduct radical. We used density functional calculations to investigate residue-specific effects on hyperfine coupling constants using models of tryptophan, tyrosine, glycine and cysteine. The results indicate that any peroxyl adduct radical attached to the first three amino acid alpha-carbons gives similar 17O hyperfine coupling constants. Structural arguments and experimental results favor W48 as the major site of peroxyl adducts in the mutant Y122F. Available molecular oxygen can be considered as a spin trap for surface-located protein free radicals.


Asunto(s)
Escherichia coli/enzimología , Hierro/química , Oxígeno/química , Peróxidos/química , Ribonucleótido Reductasas/química , Cisteína/química , Espectroscopía de Resonancia por Spin del Electrón/métodos , Glicina/química , Mutación Puntual , Ribonucleótido Reductasas/genética , Triptófano/química , Tirosina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA