RESUMEN
Cross-modal recipe retrieval has gained prominence due to its ability to retrieve a text representation given an image representation and vice versa. Clustering these recipe representations based on similarity is essential to retrieve relevant information about unknown food images. Existing studies cluster similar recipe representations in the latent space based on class names. Due to inter-class similarity and intraclass variation, associating a recipe with a class name does not provide sufficient knowledge about recipes to determine similarity. However, recipe title, ingredients, and cooking actions provide detailed knowledge about recipes and are a better determinant of similar recipes. In this study, we utilized this additional knowledge of recipes, such as ingredients and recipe title, to identify similar recipes, emphasizing attention especially on rare ingredients. To incorporate this knowledge, we propose a knowledge-infused multimodal cooking representation learning network, Ki-Cook, built on the procedural attribute of the cooking process. To the best of our knowledge, this is the first study to adopt a comprehensive recipe similarity determinant to identify and cluster similar recipe representations. The proposed network also incorporates ingredient images to learn multimodal cooking representation. Since the motivation for clustering similar recipes is to retrieve relevant information for an unknown food image, we evaluated the ingredient retrieval task. We performed an empirical analysis to establish that our proposed model improves the Coverage of Ground Truth by 12% and the Intersection Over Union by 10% compared to the baseline models. On average, the representations learned by our model contain an additional 15.33% of rare ingredients compared to the baseline models. Owing to this difference, our qualitative evaluation shows a 39% improvement in clustering similar recipes in the latent space compared to the baseline models, with an inter-annotator agreement of the Fleiss kappa score of 0.35.
RESUMEN
Computational fluid dynamics (CFD) is widely employed to predict hemodynamic characteristics in arterial models, while not friendly to clinical applications due to the complexity of numerical simulations. Alternatively, this work proposed a framework to estimate hemodynamics in vessels based on angiography images using machine learning (ML) algorithms. First, the iodine contrast perfusion in blood was mimicked by a flow of dye diffusing into water in the experimentally validated CFD modeling. The generated projective images from simulations imitated the counterpart of light passing through the flow field as an analogy of X-ray imaging. Thus, the CFD simulation provides both the ground truth velocity field and projective images of dye flow patterns. The rough velocity field was estimated using the optical flow method (OFM) based on 53 projective images. ML training with least absolute shrinkage, selection operator and convolutional neural network was conducted with CFD velocity data as the ground truth and OFM velocity estimation as the input. The performance of each model was evaluated based on mean absolute error and mean squared error, where all models achieved or surpassed the criteria of 3 × 10-3 and 5 × 10-7 m/s, respectively, with a standard deviation less than 1 × 10-6 m/s. Finally, the interpretable regression and ML models were validated with over 613 image sets. The validation results showed that the employed ML model significantly reduced the error rate from 53.5% to 2.5% on average for the v-velocity estimation in comparison with CFD. The ML framework provided an alternative pathway to support clinical diagnosis by predicting hemodynamic information with high efficiency and accuracy.
RESUMEN
BACKGROUND: Sickle cell disease (SCD) is the most common inherited blood disorder affecting millions of people worldwide. Most patients with SCD experience repeated, unpredictable episodes of severe pain. These pain episodes are the leading cause of emergency department visits among patients with SCD and may last for several weeks. Arguably, the most challenging aspect of treating pain episodes in SCD is assessing and interpreting a patient's pain intensity level. OBJECTIVE: This study aims to learn deep feature representations of subjective pain trajectories using objective physiological signals collected from electronic health records. METHODS: This study used electronic health record data collected from 496 Duke University Medical Center participants over 5 consecutive years. Each record contained measures for 6 vital signs and the patient's self-reported pain score, with an ordinal range from 0 (no pain) to 10 (severe and unbearable pain). We also extracted 3 features related to medication: medication type, medication status (given or applied, or missed or removed or due), and total medication dosage (mg/mL). We used variational autoencoders for representation learning and designed machine learning classification algorithms to build pain prediction models. We evaluated our results using an accuracy and confusion matrix and visualized the qualitative data representations. RESULTS: We designed a classification model using raw data and deep representational learning to predict subjective pain scores with average accuracies of 82.8%, 70.6%, 49.3%, and 47.4% for 2-point, 4-point, 6-point, and 11-point pain ratings, respectively. We observed that random forest classification models trained on deep represented features outperformed models trained on unrepresented data for all pain rating scales. We observed that at varying Likert scales, our models performed better when provided with medication data along with vital signs data. We visualized the data representations to understand the underlying latent representations, indicating neighboring representations for similar pain scores with a higher resolution of pain ratings. CONCLUSIONS: Our results demonstrate that medication information (the type of medication, total medication dosage, and whether the medication was given or missed) can significantly improve subjective pain prediction modeling compared with modeling with only vital signs. This study shows promise in data-driven estimated pain scores that will help clinicians with additional information about the patient's condition, in addition to the patient's self-reported pain scores.
RESUMEN
Pain in sickle cell disease (SCD) is often associated with increased morbidity, mortality, and high healthcare costs. The standard method for predicting the absence, presence, and intensity of pain has long been self-report. However, medical providers struggle to manage patients based on subjective pain reports correctly and pain medications often lead to further difficulties in patient communication as they may cause sedation and sleepiness. Recent studies have shown that objective physiological measures can predict subjective self-reported pain scores for inpatient visits using machine learning (ML) techniques. In this study, we evaluate the generalizability of ML techniques to data collected from 50 patients over an extended period across three types of hospital visits (i.e., inpatient, outpatient and outpatient evaluation). We compare five classification algorithms for various pain intensity levels at both intra-individual (within each patient) and inter-individual (between patients) level. While all the tested classifiers perform much better than chance, a Decision Tree (DT) model performs best at predicting pain on an 11-point severity scale (from 0-10) with an accuracy of 0.728 at an inter-individual level and 0.653 at an intra-individual level. The accuracy of DT significantly improves to 0.941 on a 2-point rating scale (i.e., no/mild pain: 0-5, severe pain: 6-10) at an inter-individual level. Our experimental results demonstrate that ML techniques can provide an objective and quantitative evaluation of pain intensity levels for all three types of hospital visits.
RESUMEN
COVID-19 pandemic has adversely and disproportionately impacted people suffering from mental health issues and substance use problems. This has been exacerbated by social isolation during the pandemic and the social stigma associated with mental health and substance use disorders, making people reluctant to share their struggles and seek help. Due to the anonymity and privacy they provide, social media emerged as a convenient medium for people to share their experiences about their day to day struggles. Reddit is a well-recognized social media platform that provides focused and structured forums called subreddits, that users subscribe to and discuss their experiences with others. Temporal assessment of the topical correlation between social media postings about mental health/substance use and postings about Coronavirus is crucial to better understand public sentiment on the pandemic and its evolving impact, especially related to vulnerable populations. In this study, we conduct a longitudinal topical analysis of postings between subreddits r/depression, r/Anxiety, r/SuicideWatch, and r/Coronavirus, and postings between subreddits r/opiates, r/OpiatesRecovery, r/addiction, and r/Coronavirus from January 2020 - October 2020. Our results show a high topical correlation between postings in r/depression and r/Coronavirus in September 2020. Further, the topical correlation between postings on substance use disorders and Coronavirus fluctuates, showing the highest correlation in August 2020. By monitoring these trends from platforms such as Reddit, epidemiologists, and mental health professionals can gain insights into the challenges faced by communities for targeted interventions.