Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Microbiol Spectr ; 11(1): e0362422, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36537825

RESUMEN

Toxigenic Vibrio cholerae O1 serotype Ogawa was introduced involuntarily into Haiti in October 2010, and virtually all of the clinical strains isolated during the first 5 years of the epidemic were Ogawa. Inaba strains were identified intermittently prior to 2015, with diverse mutations resulting in a common phenotype. In 2015, the percentage of clinical infections due to the Inaba serotype began to rapidly increase, with Inaba supplanting Ogawa as the dominant serotype during the subsequent 4 years. We investigated the molecular basis of the serotype switch and confirmed that all Inaba strains had the same level of mRNA expression of the wbeT genes, as well as the same translation levels for the truncated WbeT proteins in the V. cholerae Inaba isolates. Neither wbeT gene expression levels, differential mutations, or truncation size of the WbeT proteins appeared to be responsible for the successful Inaba switch in 2015. Our phylodynamic analysis demonstrated that the V. cholerae Inaba strains in Haiti evolved directly from Ogawa strains and that a significant increase of diversifying selection at the population level occurred at the time of the Ogawa-Inaba switch. We conclude that the emergence of the Inaba serotype was driven by diversifying selection, independent of the mutational pattern in the wbeT gene. IMPORTANCE Our phylodynamic analysis demonstrated that Vibrio cholerae Inaba strains in Haiti evolved directly from Ogawa strains. Our results support the hypothesis that after an initial Ogawa-dominated epidemic wave, V. cholerae Inaba was able to become the dominant strain thanks to a selective advantage driven by ongoing diversifying selection, independently from the mutational pattern in the wbeT gene.


Asunto(s)
Cólera , Vibrio cholerae O1 , Humanos , Vibrio cholerae O1/genética , Serogrupo , Cólera/epidemiología , Haití/epidemiología , Serotipificación
2.
Emerg Infect Dis ; 28(12): 2482-2490, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36417939

RESUMEN

Cholera causes substantial illness and death in Africa. We analyzed 24 toxigenic Vibrio cholerae O1 strains isolated in 2015-2017 from patients in the Great Lakes region of the Democratic Republic of the Congo. Strains originating in southern Asia appeared to be part of the T10 introduction event in eastern Africa. We identified 2 main strain lineages, most recently a lineage corresponding to sequence type 515, a V. cholerae cluster previously reported in the Lake Kivu region. In 41% of fecal samples from cholera patients, we also identified a novel ICP1 (Bangladesh cholera phage 1) bacteriophage, genetically distinct from ICP1 isolates previously detected in Asia. Bacteriophage resistance occurred in distinct clades along both internal and external branches of the cholera phylogeny. This bacteriophage appears to have served as a major driver for cholera evolution and spread, and its appearance highlights the complex evolutionary dynamic that occurs between predatory phage and bacterial host.


Asunto(s)
Bacteriófagos , Cólera , Vibrio cholerae O1 , Humanos , Cólera/epidemiología , Cólera/microbiología , Bacteriófagos/genética , República Democrática del Congo/epidemiología , Filogenia
4.
Proc Natl Acad Sci U S A ; 117(14): 7897-7904, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32229557

RESUMEN

The spread of cholera in the midst of an epidemic is largely driven by direct transmission from person to person, although it is well-recognized that Vibrio cholerae is also capable of growth and long-term survival in aquatic ecosystems. While prior studies have shown that aquatic reservoirs are important in the persistence of the disease on the Indian subcontinent, an epidemiological view postulating that locally evolving environmental V. cholerae contributes to outbreaks outside Asia remains debated. The single-source introduction of toxigenic V. cholerae O1 in Haiti, one of the largest outbreaks occurring this century, with 812,586 suspected cases and 9,606 deaths reported through July 2018, provided a unique opportunity to evaluate the role of aquatic reservoirs and assess bacterial transmission dynamics across environmental boundaries. To this end, we investigated the phylogeography of both clinical and aquatic toxigenic V. cholerae O1 isolates and show robust evidence of the establishment of aquatic reservoirs as well as ongoing evolution of V. cholerae isolates from aquatic sites. Novel environmental lineages emerged from sequential population bottlenecks, carrying mutations potentially involved in adaptation to the aquatic ecosystem. Based on such empirical data, we developed a mixed-transmission dynamic model of V. cholerae, where aquatic reservoirs actively contribute to genetic diversification and epidemic emergence, which underscores the complexity of transmission pathways in epidemics and endemic settings and the need for long-term investments in cholera control at both human and environmental levels.


Asunto(s)
Cólera/microbiología , Ecosistema , Filogenia , Vibrio cholerae O1/clasificación , Asia/epidemiología , Cólera/epidemiología , Cólera/genética , Cólera/patología , Brotes de Enfermedades , Genoma Bacteriano/genética , Haití/epidemiología , Humanos , Vibrio cholerae O1/genética , Vibrio cholerae O1/patogenicidad , Microbiología del Agua
5.
J Immunol ; 203(11): 2827-2836, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31659016

RESUMEN

The TCR-CD3 complex is a multicomponent membrane receptor, the expression of which is tightly regulated in thymocytes, as well as in mature T cells both at steady state and upon stimulation. In this study, we report novel roles for UBASH3A in TCR-CD3 synthesis and turnover. UBASH3A is a negative regulator of T cell function and plays a broad role in autoimmunity. We show that modulation of UBASH3A levels in unstimulated Jurkat cells leads to altered amounts of total cellular CD3 chains and of cell-surface TCR-CD3 complexes; in contrast, UBASH3A does not affect the level of cell-surface CD28, an important T cell costimulatory receptor. Upon TCR engagement, UBASH3A enhances the downmodulation of cell-surface TCR-CD3. Mass spectrometry and protein-protein interaction studies uncover novel associations between UBASH3A and components of several cellular pathways involved in the regulation of TCR-CD3 turnover and dynamics, including endoplasmic reticulum-associated protein degradation, cell motility, endocytosis, and endocytic recycling of membrane receptors. Finally, we demonstrate that the SH3 domain of UBASH3A mediates its binding to CBL-B, an E3 ubiquitin ligase that negatively regulates CD28-mediated signaling and, hence, T cell activation. In summary, this study provides new mechanistic insights into how UBASH3A regulates T cell activation and contributes to autoimmunity. The interaction between UBASH3A and CBL-B may synergistically inhibit T cell function and affect risk for type 1 diabetes, as both genes have been shown to be associated with this autoimmune disease.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Complejo CD3/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Células Cultivadas , Células HEK293 , Humanos , Células Jurkat
6.
Diabetes ; 66(7): 2033-2043, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28607106

RESUMEN

Although over 40 type 1 diabetes (T1D) risk loci have been mapped in humans, the causative genes and variants for T1D are largely unknown. Here, we investigated a candidate gene in the 21q22.3 risk locus-UBASH3A, which is primarily expressed in T cells where it is thought to play a largely redundant role. Genetic variants in UBASH3A have been shown to be associated with several autoimmune diseases in addition to T1D. However, the molecular mechanism underlying these genetic associations is unresolved. Our study reveals a previously unrecognized role of UBASH3A in human T cells: UBASH3A attenuates the NF-κB signal transduction upon T-cell receptor (TCR) stimulation by specifically suppressing the activation of the IκB kinase complex. We identify novel interactions of UBASH3A with nondegradative polyubiquitin chains, TAK1 and NEMO, suggesting that UBASH3A regulates the NF-κB signaling pathway by an ubiquitin-dependent mechanism. Finally, we show that risk alleles at rs11203203 and rs80054410, two T1D-associated variants in UBASH3A, increase UBASH3A expression in human primary CD4+ T cells upon TCR stimulation, inhibiting NF-κB signaling via its effects on the IκB kinase complex and resulting in reduced IL2 gene expression.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Diabetes Mellitus Tipo 1/genética , Quinasa I-kappa B/inmunología , FN-kappa B/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Proteínas Adaptadoras Transductoras de Señales/inmunología , Linfocitos T CD4-Positivos , Diabetes Mellitus Tipo 1/inmunología , Ensayo de Inmunoadsorción Enzimática , Técnicas de Inactivación de Genes , Predisposición Genética a la Enfermedad , Células HEK293 , Humanos , Interleucina-2/genética , Interleucina-2/inmunología , Células Jurkat , Leucocitos Mononucleares/inmunología , Quinasas Quinasa Quinasa PAM/inmunología , Reacción en Cadena de la Polimerasa , Transducción de Señal/genética , Transducción de Señal/inmunología , Ubiquitina/inmunología
7.
Front Microbiol ; 7: 1048, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27458442

RESUMEN

The Mississippi River (MR) serves as the primary source of freshwater and nutrients to the northern Gulf of Mexico (nGOM). Whether this input of freshwater also enriches microbial diversity as the MR plume migrates and mixes with the nGOM serves as the central question addressed herein. Specifically, in this study physicochemical properties and planktonic microbial community composition and diversity was determined using iTag sequencing of 16S rRNA genes in 23 samples collected along a salinity (and nutrient) gradient from the mouth of the MR, in the MR plume, in the canyon, at the Deepwater Horizon wellhead and out to the loop current. Analysis of these datasets revealed that the MR influenced microbial diversity as far offshore as the Deepwater Horizon wellhead. The MR had the highest microbial diversity, which decreased with increasing salinity. MR bacterioplankton communities were distinct compared to the nGOM, particularly in the surface where Actinobacteria and Proteobacteria dominated, while the deeper MR was also enriched in Thaumarchaeota. Statistical analyses revealed that nutrients input by the MR, along with salinity and depth, were the primary drivers in structuring the microbial communities. These results suggested that the reduced salinity, nutrient enriched MR plume could act as a seed bank for microbial diversity as it mixes with the nGOM. Whether introduced microorganisms are active at higher salinities than freshwater would determine if this seed bank for microbial diversity is ecologically significant. Alternatively, microorganisms that are physiologically restricted to freshwater habitats that are entrained in the plume could be used as tracers for freshwater input to the marine environment.

8.
PLoS One ; 9(11): e113384, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25423622

RESUMEN

The aquatic communities found within the water filled leaves of the pitcher plant, Sarracenia purpurea, have a simple trophic structure providing an ideal system to study microscale interactions between protozoan predators and their bacterial prey. In this study, replicate communities were maintained with and without the presence of the bactivorous protozoan, Colpoda steinii, to determine the effects of grazing on microbial communities. Changes in microbial (Archaea and Bacteria) community structure were assessed using iTag sequencing of 16S rRNA genes. The microbial communities were similar with and without the protozoan predator, with>1000 species. Of these species, Archaea were negligible, with Bacteria comprising 99.99% of the microbial community. The Proteobacteria and Bacteroidetes were the most dominant phyla. The addition of a protozoan predator did not have a significant effect on microbial evenness nor richness. However, the presence of the protozoan did cause a significant shift in the relative abundances of a number of bacterial species. This suggested that bactivorous protozoan may target specific bacterial species and/or that certain bacterial species have innate mechanisms by which they evade predators. These findings help to elucidate the effect that trophic structure perturbations have on predator prey interactions in microbial systems.


Asunto(s)
Cilióforos/parasitología , Hojas de la Planta/microbiología , Sarraceniaceae/microbiología , Archaea/genética , Archaea/aislamiento & purificación , Bacterias/genética , Bacterias/aislamiento & purificación , Cilióforos/crecimiento & desarrollo , Hojas de la Planta/parasitología , ARN Ribosómico 16S/genética , Sarraceniaceae/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA