Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202413528, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39473265

RESUMEN

Solar-powered lignin reforming offers a carbon-neutral route for syngas production. This study explores a dual non-precious iron-manganese cocatalyst to simultaneously activate both C-C and C-O bonds for maximizing the utilization of various substituents of native lignin to yield syngas. By assembling with InGaN nanowires on a Si wafer, the as-designed dual FeMn cocatalyst affords a measurable syngas evolution rate of 42.4 mol·gcat-1·h-1 from native lignin in distilled water with a high selectivity of 93% and tunable H2/CO ratios under concentrated light, leading to a considerable light-to-fuel efficiency of 11.8%. The high FeMn atom efficiency arising from the 1-dimensional nanostructure of InGaN enables the achievement of a high turnover frequency (TOF) of 220896 mol syngas per mol FeMn per hour. By correlating exploration experiments, the critical role of the dual FeMn cocatalyst in the evolving mechanism of lignin and water toward syngas is disclosed at the atomic level. It is discovered that the synergetic iron-manganese cocatalyst supported by InGaN nanowires enables simultaneous activation of C-C and C-O bonds with comparable minimized dissociation energies. This work demonstrates a new and earth-abundant bifunctional cocatalyst for utilizing various substituents of lignin to produce syngas powered by sunlight beyond fossil fuels.

2.
J Adv Res ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39243941

RESUMEN

INTRODUCTION: Taurine is a naturally occurring sulfonic acid involved in various physiological and pathological processes, such as the regulation of calcium signaling, immune function, inflammatory response, and cellular aging. It has the potential to predict tumor malignant transformation and formation. Our previous work discovered the elevated taurine in lung cancer patients. However, the precise impact and mechanism of elevated serum taurine levels on lung cancer progression and the suitability of taurine or taurine-containing drinks for lung cancer patients remain unclear. OBJECTIVES: Our study aimed to systematically investigate the role of taurine in lung cancer, with the ultimate goal of contributing novel strategies for lung cancer treatment. METHODS: Lung cancer C57 and nude mice models, RNA sequencing, and stable transfection were applied to explored the effects and mechanisms of taurine on lung cancer. Tissues of 129 non-small cell lung cancer (NSCLC) patients derived from 2014 to 2017 for immunohistochemistry were collected in Taihe Hospital. RESULTS: Low doses of taurine, as well as taurine-infused beverages at equivalent doses, significantly enhanced lung tumor growth. Equally intriguing is that the promoting effect of taurine on lung cancer progression wanes as the dosage increases. The Nuclear factor erythroid 2-like 1 (Nfe2l1 or Nrf1)-reactive oxygen species (ROS)-PD-1 axis may be a potential mechanism for dual role of taurine in lung cancer progression. However, taurine's impacts on lung cancer progression and the anti-tumor function of Nfe2l1 were mainly determined by the immune competence. Taurine inhitited lung tumor growth probably by inhibiting NF-κB-mediated inflammatory responses in nude mice rather than by affecting Nfe2l1 function. As patients age increased, Nfe2l1 gene and protein gradually returned to the levels observed in healthy individuals, but lost its anti-lung cancer effects. CONCLUSIONS: Taurine emerges as a potential biomarker for lung cancer progression, predicting poor prognosis and unsuitability for specific patients. Lung cancer patients, especially young patients, should be conscious of potential effects of taurine-containing drinks. Conversely, taurine or its drinks may be more suitable for older or immune-deficient patients.

3.
Nat Commun ; 15(1): 7393, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191764

RESUMEN

Photo-thermal-coupling ammonia decomposition presents a promising strategy for utilizing the full-spectrum to address the H2 storage and transportation issues. Herein, we exhibit a photo-thermal-catalytic architecture by assembling gallium nitride nanowires-supported ruthenium nanoparticles on a silicon for extracting hydrogen from ammonia aqueous solution in a batch reactor with only sunlight input. The photoexcited charge carriers make a predomination contribution on H2 activity with the assistance of the photothermal effect. Upon concentrated light illumination, the architecture significantly reduces the activation energy barrier from 1.08 to 0.22 eV. As a result, a high turnover number of 3,400,750 is reported during 400 h of continuous light illumination, and the H2 activity per hour  is nearly 1000 times higher than that under the pure thermo-catalytic conditions. The reaction mechanism is extensively studied by coordinating experiments, spectroscopic characterizations, and density functional theory calculation. Outdoor tests validate the viability of such a multifunctional architecture for ammonia decomposition toward H2 under natural sunlight.

4.
World J Clin Cases ; 12(23): 5422-5430, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39156098

RESUMEN

BACKGROUND: Multiple acyl-CoA dehydrogenase deficiency (MADD) is a disease of rare autosomal recessive disorder. There are three types of MADD. Type I is a neonatal-onset form with congenital anomalies. Type II is a neonatal-onset form without congenital anomalies. Type III is considered to a milder form and usually responds to riboflavin. However, late-onset form could also be fatal and not responsive to treatments. CASE SUMMARY: We report a severe case of a young man with onset type III MADD induced by drugs and strenuous exercise characterized by rhabdomyolysis and liver dysfunction. Urine analysis indicated 12 out of 70 kinds of organic acids like glutaric acid-2 were detected. Serum analysis in genetic metabolic diseases revealed 24 out of 43 tested items were abnormal, revealing the elevation of several acylcarnitines and the reduction of carnitine in the patient. By next generation sequencing technology for gene sequencing related to fatty acid oxidation and carnitine cycle defects, a rare ETFDH gene variant was identified: NM_004453:4:C.1448C>T(p.Pro483 Leu). The patient was diagnosed with late-onset GAII. He was not responsive to riboflavin and progressively worsened into multiple organ failure that finally led to death. CONCLUSION: Type III MADD can also be fatal and not responsive to treatments.

5.
J Ethnopharmacol ; 337(Pt 1): 118755, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39209002

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Pulmonary fibrosis (PF) is progressive and terminal lung disease, which is also the most common sequelae of Corona Virus Disease (2019) (COVID-19) survivors. Unfortunately, there is currently no cure for PF. ShaShen-MaiDong decoction (SMT), a traditional Chinese medicine, has been employed in treating various lung diseases, which may offer potential therapeutic benefits for PF. AIM OF THE STUDY: To investigate the antifibrotic efficacy of SMT and its major active ingredients as well as the underlying mechanisms for treating PF. MATERIALS AND METHODS: Fist, we build the UPLC-MS based qualitative and quantitative profiling for the quality control of SMT. Then, the antifibrotic efficacy of SMT was investigated in bleomycin (BLM)-induced PF mice model. Network pharmacology was used to predict the mechanism and active components of SMT for the treatment of PF, which was further verified in vitro and in vivo. RESULTS: SMT improved the weight loss and attenuated hydroxyproline, inflammatory cytokines, and collagen deposition in BLM-induced PF mice model in a dose-dependent manner. Mechanistically, as predicted by network pharmacology analysis, SMT and its active compounds (kaempferol, quercetin, and isorhamnetin) regulated the mitogen-activated protein kinase (MAPK) signaling pathways, TGF-ß/Smad signaling pathway, and YAP/TAZ signaling pathway, which was further verified in the PF mice and TGF-ß-induced A549 cell model. Moreover, SMT balanced the proportions of increased CD4+ and decreased CD8+ T cells in the peripheral blood of PF mice model. CONCLUSIONS: Considering the high mortality and complex pathogenesis of fibrotic diseases, our results provide novel evidence that SMT would be beneficial for pulmonary fibrosis therapy by modulating MAPK, TGF-ß/Smad, and YAP/TAZ signaling pathways at same time.

6.
Angew Chem Int Ed Engl ; 63(39): e202405904, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-38960870

RESUMEN

Transformation of lignin to syngas can turn waste into treasure yet remains a tremendous challenge because of its naturally evolved stubborn structure. In this work, light-driven reforming of natural lignin in water for green syngas production is explored using Pt-decorated InGaN nanowires. The spectroscopic characterizations, isotope, and model compound experiments, as well as density function theory calculation, disclose that among a variety of groups including aromatic ring, -OH, -OCH3, -C3H7 with complex chemical bonds of O-H, C-H, C-C, C-O, etc., InGaN nanowires are cooperative with Pt for preferably breaking the C-O bond of the rich O-CH3 group in lignin to liberating ⋅CH3 by photogenerated holes with a minimum dissociation energy of 2.33 eV. Syngas are subsequently yielded from the continuous evolution of ⋅CH3 and ⋅OH from photocatalytic reforming of lignin in water. Together with the superior optoelectronic attributes of Pt-decorated InGaN nanowires, the evolution rate of syngas approaches 43.4 mol ⋅ g-1 ⋅ h-1 with tunable H2/CO ratios and a remarkable turnover number (TON) of 150, 543 mol syngas per mol Pt. Notably, the architecture demonstrates a high light efficiency of 12.1 % for syngas generation under focused light without any extra thermal input. Outdoor test ascertains the viability of producing syngas with the only inputs of natural lignin, water, and sunlight, thus presenting a low-carbon route for synthesizing transportation fuels and value-added chemicals.

7.
Phytomedicine ; 129: 155591, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38692075

RESUMEN

BACKGROUND: Acute lung injury (ALI) is a continuum of lung changes caused by multiple lung injuries, characterized by a syndrome of uncontrolled systemic inflammation that often leads to significant morbidity and death. Anti-inflammatory is one of its treatment methods, but there is no safe and available drug therapy. Syringic acid (SA) is a natural organic compound commonly found in a variety of plants, especially in certain woody plants and fruits. In modern pharmacological studies, SA has anti-inflammatory effects and therefore may be a potentially safe and available compound for the treatment of acute lung injury. PURPOSE: This study attempts to reveal the protective mechanism of SA against ALI by affecting the polarization of macrophages and the activation of NF-κB signaling pathway. Trying to find a safer and more effective drug therapy for clinical use. METHODS: We constructed the ALI model using C57BL/6 mice by intratracheal instillation of LPS (10 mg/kg). Histological analysis was performed with hematoxylin and eosin (H&E). The wet-dry ratio of the whole lung was measured to evaluate pulmonary edema. The effect of SA on macrophage M1-type was detected by flow cytometry. BCA protein quantification method was used to determine the total protein concentration in bronchoalveolar lavage fluid (BALF). The levels of Interleukin (IL)-6, IL-1ß, and tumor necrosis factor (TNF)-α in BALF were determined by the ELISA kits, and RT-qPCR was used to detect the expression levels of IL-6, IL-1ß and TNF-α mRNA of lung tissue. Western blot was used to detect the expression levels of iNOS and COX-2 and the phosphorylation of p65 and IκBα in the NF-κB pathway in lung tissue. In vitro experiments were conducted with RAW267.4 cell inflammation model induced by 100 ng/ml LPS and A549 cell inflammation model induced by 10 µg/ml LPS. The effects of SA on M1-type and M2-type macrophages of RAW267.4 macrophages induced by LPS were detected by flow cytometry. The toxicity of compound SA to A549 cells was detected by MTT method which to determine the safe dose of SA. The expressions of COX-2 and the phosphorylation of p65 and IκBα protein in NF-κB pathway were detected by Western blot. RESULTS: We found that the pre-treatment of SA significantly reduced the degree of lung injury, and the infiltration of neutrophils in the lung interstitium and alveolar space of the lung. The formation of transparent membrane in lung tissue and thickening of alveolar septum were significantly reduced compared with the model group, and the wet-dry ratio of the lung was also reduced. ELISA and RT-qPCR results showed that SA could significantly inhibit the production of IL-6, IL-1ß, TNF-α. At the same time, SA could significantly inhibit the expression of iNOS and COX-2 proteins, and could inhibit the phosphorylation of p65 and IκBα proteins. in a dose-dependent manner. In vitro experiments, we found that flow cytometry showed that SA could significantly inhibit the polarization of macrophages from M0 type macrophages to M1-type macrophages, while SA could promote the polarization of M1-type macrophages to M2-type macrophages. The results of MTT assay showed that SA had no obvious cytotoxicity to A549 cells when the concentration was not higher than 80 µM, while LPS could promote the proliferation of A549 cells. In the study of anti-inflammatory effect, SA can significantly inhibit the expression of COX-2 and the phosphorylation of p65 and IκBα proteins in LPS-induced A549 cells. CONCLUSION: SA has possessed a crucial anti-ALI role in LPS-induced mice. The mechanism was elucidated, suggesting that the inhibition of macrophage polarization to M1-type and the promotion of macrophage polarization to M2-type, as well as the inhibition of NF-κB pathway by SA may be the reasons for its anti-ALI. This finding provides important molecular evidence for the further application of SA in the clinical treatment of ALI.


Asunto(s)
Lesión Pulmonar Aguda , Ácido Gálico , Lipopolisacáridos , Macrófagos , Ratones Endogámicos C57BL , FN-kappa B , Animales , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/inducido químicamente , Ratones , Ácido Gálico/farmacología , Ácido Gálico/análogos & derivados , Macrófagos/efectos de los fármacos , FN-kappa B/metabolismo , Masculino , Transducción de Señal/efectos de los fármacos , Antiinflamatorios/farmacología , Modelos Animales de Enfermedad , Pulmón/efectos de los fármacos , Pulmón/patología , Células RAW 264.7 , Interleucina-1beta/metabolismo , Líquido del Lavado Bronquioalveolar , Óxido Nítrico Sintasa de Tipo II/metabolismo , Interleucina-6/metabolismo
8.
Chem Sci ; 15(20): 7714-7724, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38784755

RESUMEN

Photo-thermal-synergistic hydrogenation is a promising strategy for upcycling carbon dioxide into fuels and chemicals by maximally utilizing full-spectrum solar energy. Herein, by immobilizing Pt-Rh bimetal onto a well-developed GaN NWs/Si platform, CO2 was photo-thermo-catalytically hydrogenated towards CO under concentrated light illumination without extra energies. The as-designed architecture demonstrates a considerable CO evolution rate of 11.7 mol gGaN-1 h-1 with a high selectivity of 98.5% under concentrated light illumination of 5.3 W cm-2, leading to a benchmark turnover frequency of 26 486 mol CO per mol PtRh per hour. It is nearly 2-3 orders of magnitude higher than that of pure thermal catalysis under the same temperature by external heating without light. Control experiments, various spectroscopic characterization methods, and density functional theory calculations are correlatively conducted to reveal the origin of the remarkable performance as well as the photo-thermal enhanced mechanism. It is found that the recombination of photogenerated electron-hole pairs is dramatically inhibited under high temperatures arising from the photothermal effect. More critically, the synergy between photogenerated carriers arising from ultraviolet light and photoinduced heat arising from visible- and infrared light enables a sharp reduction of the apparent activation barrier of CO2 hydrogenation from 2.09 downward to 1.18 eV. The evolution pathway of CO2 hydrogenation towards CO is also disclosed at the molecular level. Furthermore, compared to monometallic Pt, the introduction of Rh further reduces the desorption energy barrier of *CO by optimizing the electronic properties of Pt, thus enabling the achievement of excellent activity and selectivity. This work provides new insights into CO2 hydrogenation by maximally utilizing full-spectrum sunlight via photo-thermal synergy.

9.
Adv Sci (Weinh) ; 11(29): e2402651, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38816938

RESUMEN

Hydrogen (H2) has emerged as a clean and versatile energy carrier to power a carbon-neutral economy for the post-fossil era. Hydrogen generation from low-cost and renewable biomass by virtually inexhaustible solar energy presents an innovative strategy to process organic solid waste, combat the energy crisis, and achieve carbon neutrality. Herein, the progress and breakthroughs in solar-powered H2 production from biomass are reviewed. The basic principles of solar-driven H2 generation from biomass are first introduced for a better understanding of the reaction mechanism. Next, the merits and shortcomings of various semiconductors and cocatalysts are summarized, and the strategies for addressing the related issues are also elaborated. Then, various bio-based feedstocks for solar-driven H2 production are reviewed with an emphasis on the effect of photocatalysts and catalytic systems on performance. Of note, the concurrent generation of value-added chemicals from biomass reforming is emphasized as well. Meanwhile, the emerging photo-thermal coupling strategy that shows a grand prospect for maximally utilizing the entire solar energy spectrum is also discussed. Further, the direct utilization of hydrogen from biomass as a green reductant for producing value-added chemicals via organic reactions is also highlighted. Finally, the challenges and perspectives of photoreforming biomass toward hydrogen are envisioned.

10.
J Colloid Interface Sci ; 665: 443-451, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38537590

RESUMEN

Despite great efforts that have been made, photocatalytic carbon dioxide (CO2) reduction still faces enormous challenges due to the sluggish kinetics or disadvantageous thermodynamics. Herein, cadmium sulfide quantum dots (CdS QDs) were loaded onto carbon, oxygen-doped boron nitride (BN) and encapsulated by titanium carbide (Ti3C2, MXene) layers to construct a ternary composite. The uniform distribution of CdS QDs and the tight interfacial interaction among the three components could be achieved by adjusting the loading amounts of CdS QDs and MXene. The ternary 100MX/CQ/BN sample gave a productive rate of 2.45 and 0.44 µmol g-1 h-1 for carbon monoxide (CO) and methane (CH4), respectively. This CO yield is 1.93 and 6.13 times higher than that of CdS QDs/BN and BN counterparts. The photocatalytic durability of the ternary composite is significantly improved compared with CdS QDs/BN because MXene can protect CdS from photocorrosion. The characterization results demonstrate that the excellent CO2 adsorption and activation capabilities of BN, the visible light absorption of CdS QDs, the good conductivity of MXene and the well-matched energy band alignment jointly promote the photocatalytic performance of the ternary catalyst.

11.
Angew Chem Int Ed Engl ; 63(16): e202400011, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38409577

RESUMEN

Light-driven hydrogen production from biomass derivatives offers a path towards carbon neutrality. It is often however operated with the limitations of sluggish kinetics and severe coking. Herein, a disruptive air-promoted strategy is explored for efficient and durable light-driven hydrogen production from ethanol over a core/shell Cr2O3@GaN nanoarchitecture. The correlative computational and experimental investigations show ethanol is energetically favorable to be adsorbed on the Cr2O3@GaN interface, followed by dehydrogenation toward acetaldehyde and protons by photoexcited holes. The released protons are then consumed for H2 evolution by photogenerated electrons. Afterward, O2 can be evolved into active oxygen species and promote the deprotonation and C-C cleavage of the key C2 intermediate, thus significantly lowering the reaction energy barrier of hydrogen evolution and removing the carbon residual with inhibited overoxidation. Consequently, hydrogen is produced at a high rate of 76.9 mole H2 per gram Cr2O3@GaN per hour by only feeding ethanol, air, and light, leading to the achievement of a turnover number of 266,943,000 mole H2 per mole Cr2O3 over a long-term operation of 180 hours. Notably, an unprecedented light-to-hydrogen efficiency of 17.6 % is achieved under concentrated light illumination. The simultaneous generation of aldehyde from ethanol dehydrogenation enables the process more economically promising.

12.
Sci Bull (Beijing) ; 69(10): 1400-1409, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38402030

RESUMEN

Light-driven dry reforming of methane toward syngas presents a proper solution for alleviating climate change and for the sustainable supply of transportation fuels and chemicals. Herein, Rh/InGaN1-xOx nanowires supported by silicon wafer are explored as an ideal platform for loading Rh nanoparticles, thus assembling a new nanoarchitecture for this grand topic. In combination with the remarkable photo-thermal synergy, the O atoms in Rh/InGaN1-xOx can significantly lower the apparent activation energy of dry reforming of methane from 2.96 eV downward to 1.70 eV. The as-designed Rh/InGaN1-xOx NWs nanoarchitecture thus demonstrates a measurable syngas evolution rate of 180.9 mmol gcat-1 h-1 with a marked selectivity of 96.3% under concentrated light illumination of 6 W cm-2. What is more, a high turnover number (TON) of 4182 mol syngas per mole Rh has been realized after six reuse cycles without obvious activity degradation. The correlative 18O isotope labeling experiments, in-situ irradiated X-ray photoelectron spectroscopy (ISI-XPS) and in-situ diffuse reflectance Fourier transform infrared spectroscopy characterizations, as well as density functional theory calculations reveal that under light illumination, Rh/InGaN1-xOx NWs facilitate releasing *CH3 and H+ from CH4 by holes, followed by H2 evolution from H+ reduction with electrons. Subsequently, the O atoms in Rh/InGaN1-xOx can directly participate in CO generation by reacting with the *C species from CH4 dehydrogenation and contributes to the coke elimination, in concurrent formation of O vacancies. The resultant O vacancies are then replenished by CO2, showing an ideal chemical loop. This work presents a green strategy for syngas production via light-driven dry reforming of methane.

13.
Small ; 20(25): e2309906, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38221704

RESUMEN

On-site hydrogen production from liquid organic hydrogen carriers e.g., methanol provides an emerging strategy for the safe storage and transportation of hydrogen. Herein, a catalytic architecture consisting of nickel-cobalt nanoclusters dispersed on gallium nitride nanowires supported by silicon for light-driven hydrogen production from methanol is reported. By correlative microscopic, spectroscopic characterizations, and density functional theory calculations, it is revealed that NiCo nanoclusters work in synergy with GaN nanowires to enable the achievement of a significantly reduced activation energy of methanol dehydrogenation by switching the potential-limiting step from *CHO → *CO to *CH3O → *CH2O. In combination with the marked photothermal effect, a high hydrogen rate of 5.62 mol·gcat-1·h-1 with a prominent turnover frequency of 43,460 h-1 is achieved at 5 Wcm-2 without additional energy input. Remarkably, the synergy between Co and Ni, in combination with the unique surface of GaN, renders the architecture with outstanding resistance to sintering and coking. The architecture thereby exhibits a high turnover number of >16,310,000 over 600 h. Outdoor testing validates the viability of the architecture for active and robust hydrogen evolution under natural concentrated sunlight. Overall, this work presents a promising architecture for on-site hydrogen production from CH3OH by virtually unlimited solar energy.

14.
Curr Microbiol ; 81(1): 44, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38117411

RESUMEN

A novel Gram-stain-negative, aerobic, rod-shaped bacterium named T808T was isolated from an alpine soil in Qamdo, Tibet, PR China. Strain T808T grew at 5-30℃, pH 5.0-9.0 (optimum, 25℃ and pH 7.0-8.0) with 0-2% (w/v) NaCl (optimum, 0%). The 16S rRNA gene sequences of strain T808T showed the highest similarity with Pararhizobium herbae CCBAU83011T (98.8%), followed by Pararhizobium polonicum F5.1T (98.7%), Pararhizobium giardinii H152T (98.5%), Rhizobium gei ZFJT-2 T (98.4%), and Pararhizobium antarcticum NAQVI59T (97.5%). The highest digital DNA-DNA hybridization (dDDH), core-proteome average amino acid identity (cpAAI) and average nucleotide identity (ANI) values between strain T808T and related strains were estimated as 28.0%, 92.1% and 84.4%, respectively. Phylogenetic analysis based on 16S rRNA, core-proteome and whole-genome indicated that strain T808T belonged to the genus Pararhizobium. The genome size was 6.24 Mbp with genomic DNA G + C content of 60.1%. The major cellular fatty acids were Summed feature 8 (C18:1 ω7c or C18:1 ω6c), C16:0 and C19:0 cyclo ω8c. The polar lipids were diphosphatidyl glycerol, phosphatidyl glycerol, phosphatidyl ethanolamine, phosphatidyl choline and unidentified aminophospholipid. The isoprenoid quinone were ubiquinone-10 and ubiquinone-9. Based on phenotypic, phylogenetic, and genotypic data, strain T808T is considered to represent a novel species of the genus Pararhizobium, for which the name Pararhizobium qamdonense sp. nov. is proposed. The type strain is T808T (= JCM 36247 T = CICC 25216 T). According to phylogenetic coherence based on 16S rRNA, core-proteome and whole-genome, it is also proposed that the type strain Rhizobium gei Shi et al. 2016 should be reclassified as Pararhizobium gei comb. nov., the type strain is ZFJT-2 T (= CCTCC AB 2013015 T = KCTC 32301 T = LMG 27603 T).


Asunto(s)
ADN , Proteoma , Tibet , ARN Ribosómico 16S/genética , Filogenia , Fosfatidilgliceroles
15.
J Thorac Dis ; 15(10): 5534-5548, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37969309

RESUMEN

Background: Pulmonary cryptococcosis (PC) contributes to the ongoing global disease burden in human immunodeficiency virus (HIV)-negative populations. Since some PC patients are misdiagnosed under existing diagnostic guidelines, new diagnostic markers are needed to improve diagnostic accuracy and therapeutic efficacy and reduce disease risk. Methods: Our previously established sphingolipidomic approach was employed to explore the use of serum sphingolipids (SPLs) in diagnosing HIV-negative patients with PC. A clinical cohort of PC, pulmonary aspergillosis (PA), and tuberculosis (TB) patients and healthy controls was assessed to identify SPL biomarkers. Results: A total of 47 PC, 27 PA, and 18 TB patients and 40 controls were enrolled. PC and TB patients had similar clinical features, laboratory test results and radiological features, excluding plural effusion. The serum ceramide [Cer (d18:1/18:0)] level showed a significant increase in PC patients compared to controls and PA and TB patients (P<0.05). Cer (d18:1/18:0) was identified as a specific diagnostic biomarker for PC. The optimal cut-off value of greater than 18.00 nM showed a diagnostic sensitivity of 76.60% and a specificity of 95.00% and better distinguished PC patients from PA and TB patients. Furthermore, the serum Cer (d18:1/18:0) level gradually decreased after 3 and 6 months of treatment, suggesting the prediction potential for therapeutic efficacy of this biomarker. In addition, Cer (d18:1/18:0) analysis presented a higher sensitivity than the cryptococcal antigen (CrAg) assay. Conclusions: This is the first study to report the use of the SPL Cer (d18:1/18:0) as a serum biomarker for diagnosing Cryptococcus spp. infection in HIV-negative patients.

16.
Molecules ; 28(17)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37687195

RESUMEN

As a vital organelle in eukaryotic cells, the Golgi apparatus is responsible for processing and transporting proteins in cells. Precisely monitoring the status of the Golgi apparatus with targeted fluorescence imaging technology is of enormous importance but remains a dramatically challenging task. In this study, we demonstrate the construction of the first Golgi apparatus-targeted near-infrared (NIR) fluorescent nanoprobe, termed Golgi-Pdots. As a starting point of our investigation, hydrophobic carbon nanodots (CNDs) with bright NIR fluorescence at 674 nm (fluorescence quantum yield: 12.18%), a narrow emission band of 23 nm, and excellent stability were easily prepared from Magnolia Denudata flowers using an ultrasonic method. Incorporating the CNDs into a polymer matrix modified with Golgi-targeting molecules allowed for the production of the water-soluble Golgi-Pdots, which showed high colloidal stability and similar optical properties compared with pristine CNDs. Further studies revealed that the Golgi-Pdots showed good biocompatibility and Golgi apparatus-targeting capability. Based on these fascinating merits, utilizing Golgi-Pdots for the long-term tracking of the Golgi apparatus inside live cells was immensely successful.


Asunto(s)
Aparato de Golgi , Carbono , Colorantes , Polímeros
17.
Chem Commun (Camb) ; 59(82): 12314-12317, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37753591

RESUMEN

Quasi-bilayered actuators composed of Fe3O4-decorated graphene oxide and polyvinylidene fluoride have been fabricated in a magnetic field. The actuators could stably respond to multiple stimuli including infrared light, acetone vapour and a magnetic field. The actuator is also patternable because of the magnetism-induced spatial distribution of fillers in the matrix.

18.
Nat Commun ; 14(1): 5115, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37607911

RESUMEN

Response to immunotherapy widely varies among cancer patients and identification of parameters associating with favourable outcome is of great interest. Here we show longitudinal monitoring of peripheral blood samples of non-small cell lung cancer (NSCLC) patients undergoing anti-PD1 therapy by high-dimensional cytometry by time of flight (CyTOF) and Meso Scale Discovery (MSD) multi-cytokines measurements. We find that higher proportions of circulating CD8+ and of CD8+CD101hiTIM3+ (CCT T) subsets significantly correlate with poor clinical response to immune therapy. Consistently, CD8+ T cells and CCT T cell frequencies remain low in most responders during the entire multi-cycle treatment regimen; and higher killer cell lectin-like receptor subfamily G, member 1 (KLRG1) expression in CCT T cells at baseline associates with prolonged progression free survival. Upon in vitro stimulation, CCT T cells of responders produce significantly higher levels of cytokines, including IL-1ß, IL-2, IL-8, IL-22 and MCP-1, than of non-responders. Overall, our results provide insights into the longitudinal immunological landscape underpinning favourable response to immune checkpoint blockade therapy in lung cancer patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Linfocitos T CD8-positivos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Inmunoterapia , Citocinas , Subfamília D de Receptores Similares a Lectina de las Células NK
19.
Pharmacol Res ; 194: 106850, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37453674

RESUMEN

Non-small cell lung cancer (NSCLC) is one of the main malignant tumors with high mortality and short survival time. Immunotherapy has become the standard treatment for advanced NSCLC, but it has the problems of drug resistance and low response rate. Therefore, obtaining effective biomarkers to predict and enhance immune checkpoint inhibitors (ICIs) efficacy in NSCLC is important. Sphingolipid metabolism is recently found to be closely involved in tumor immunotherapy. CERS4, an important sphingolipid metabolizing enzyme, is positively correlated with the efficacy of anti-PD-1 therapy for NSCLC. Upregulation of CERS4 expression could improve the efficacy of anti-PD-1 therapy for NSCLC. High expression of CERS4 could downregulate the expression of Rhob in tumor. Significantly, the ratio of CD4+/CD8+ T cell increased and the ratio of Tim-3+/CD8+ T cell decreased in spleen and peripheral blood cells. When Rhob was knocked out, the efficacy of PD-1 mAb treatment increased, and the frequency of Tim-3+ CD8+ T cell decreased. This finding further confirmed the role of sphingolipid metabolites in regulating the immunotherapeutic function of NSCLC. These metabolites may improve the efficacy of PD-1 mAb in NSCLC by regulating the CERS4/Rhob/Tim-3 axis. Overall, this study provided a potential and effective target for predicting and improving the efficacy of ICIs for NSCLC. It also provided a new perspective for the study on the mechanisms of ICIs resistance for NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Linfocitos T CD8-positivos , Inmunomodulación , Neoplasias Pulmonares/patología
20.
Phytomedicine ; 114: 154751, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37004400

RESUMEN

BACKGROUND: Chronic diseases such as tumors and autoimmune disorders are closely linked to metabolism and immunity and require conflicting treatment methods. AMPK can regulate cell growth and inflammation through energy metabolism. Sinomenine is a compound extracted from the traditional Chinese herb sinomenium acutum (Thunb.) Rehd. et Wils. It has been used to treat NSCLC (non-small-cell lung cancer) and RA (rheumatoid arthritis) in some studies, but with limited understanding of its mechanisms. OBJECTIVE: This study aims to examine the inhibitory effect of sinomenine hydrochloride (SH) on NSCLC and RA and to understand the underlying joint mechanisms. RESULTS: The results indicate that SH has a cytotoxic effect specifically on tumor cells, but not on normal cells. SH was found to induce cell apoptosis by activating the AMPK-mTOR pathway. Additionally, in autoimmune disease cell models, SH was shown to reduce the growth of RA-FLS cells by inhibiting the phosphorylation of AMPK, while having no effect on normal macrophages. Moreover, in vivo studies also showed that SH could reduce the production of pro-inflammatory cytokines such as TNF-α, IL-1ß, and IL-6 and slow the development of adjuvant arthritis in rats. Furthermore, SH was found to significantly suppress tumor growth in a tumor xenograft experiment in mice. CONCLUSIONS: This study provides new insights into the treatment of tumors and autoimmune diseases by demonstrating that SH can selectively inhibit the growth of NSCLC cells and the progression of RA through activation of the AMPK pathway.


Asunto(s)
Antineoplásicos , Artritis Reumatoide , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Ratas , Ratones , Animales , Proteínas Quinasas Activadas por AMP , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Antineoplásicos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA