Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Asunto principal
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Org Process Res Dev ; 28(4): 1213-1223, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38660377

RESUMEN

Visceral leishmaniasis (VL), a parasitic, poverty-linked, neglected disease, is endemic across multiple regions of the world and fatal if untreated. There is an urgent need for a better and more affordable treatment for VL. DNDI-6148 is a promising drug candidate being evaluated for the treatment of VL; however, the current process for producing the key intermediate of DNDI-6148, 6-amino-1-hydroxy-2,1-benzoxaborolane, is expensive and difficult to scale up. Herein, we describe two practical approaches to synthesizing 6-amino-1-hydroxy-2,1-benzoxaborolane from inexpensive and readily available raw materials. Starting with 4-tolunitrile, the first approach is a five-step sequence involving a Hofmann rearrangement, resulting in an overall yield of 40%. The second approach utilizes 2-methyl-5-nitroaniline as the starting material and features borylation of aniline and continuous flow hydrogenation as the key steps, with an overall yield of 46%. Both routes bypass the nitration of 1-hydroxy-2,1-benzoxaborolane, which is challenging and expensive to scale. In particular, the second approach is more practical and scalable because of the mild operating conditions and facile isolation process.

2.
Nature ; 441(7093): 621-3, 2006 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-16738656

RESUMEN

Ever since Pasteur noticed that tartrate crystals exist in two non-superimposable forms that are mirror images of one another--as are left and right hands--the phenomenon of chirality has intrigued scientists. On the molecular level, chirality often has a profound impact on recognition and interaction events and is thus important to biochemistry and pharmacology. In chemical synthesis, much effort has been directed towards developing asymmetric synthesis strategies that yield product molecules with a significant excess of either the left-handed or right-handed enantiomer. This is usually achieved by making use of chiral auxiliaries or catalysts that influence the course of a reaction, with the enantiomeric excess (ee) of the product linearly related to the ee of the auxiliary or catalyst used. In recent years, however, an increasing number of asymmetric reactions have been documented where this relationship is nonlinear, an effect that can lead to asymmetric amplification. Theoretical models have long suggested that autocatalytic processes can result in kinetically controlled asymmetric amplification, a prediction that has now been verified experimentally and rationalized mechanistically for an autocatalytic alkylation reaction. Here we show an alternative mechanism that gives rise to asymmetric amplification based on the equilibrium solid-liquid phase behaviour of amino acids in solution. This amplification mechanism is robust and can operate in aqueous systems, making it an appealing proposition for explaining one of the most tantalizing examples of asymmetric amplification-the development of high enantiomeric excess in biomolecules from a presumably racemic prebiotic world.


Asunto(s)
Aminoácidos/química , Aminoácidos/metabolismo , Aldehídos/química , Aldehídos/metabolismo , Alquilación , Catálisis , Cinética , Prolina/química , Prolina/metabolismo , Estereoisomerismo , Termodinámica , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA