Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 297
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Colloid Interface Sci ; 677(Pt B): 21-29, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39133995

RESUMEN

The architecture of electrodes plays a pivotal role in the transfer and transportation of charges during electrochemical reactions. Selecting optimal electrode materials and devising well-conceived electrode structures can substantially enhance the electrochemical performance of devices. This manuscript leverages 3D printing technology to fabricate asymmetric supercapacitor devices featuring regular layered configurations. By investigating the impact of various materials on the internal architecture of printed electrodes, we establish a stratified electrode structure with an orderly arrangement, thereby significantly improving asymmetric charge transfer between electrodes. The application of 3D printing technology to construct electrode structures effectively mitigates the agglomeration of electrode materials. The 3D-printed VCG//MXene devices demonstrate exceptional areal capacitance (205.57 mF cm-2) and energy density (60.03 µWh cm-2), with a power density of 0.174 W cm-2. Consequently, selecting appropriate materials for fabricating printable electrode structures and achieving efficient 3D printing is anticipated to offer novel insights into the construction and enhancement of miniature asymmetric micro-supercapacitor (MSCs) devices.

2.
Angew Chem Int Ed Engl ; : e202411579, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39086196

RESUMEN

Prussian blue analogues (PBAs) have been widely studied in aqueous zinc-ion batteries (AZIBs) due to the characteristics of large specific surface area, open aperture, and straightforward synthesis. In this work, vanadium-based PBA nanocubes were firstly prepared using a mild in-situ conversion strategy at room temperature without the protection of noble gas. Benefiting from the multiple-redox active sites of V3+/V4+, V4+/V5+ and Fe2+/Fe3+, the cathode exhibited an excellent discharge specific capacity of 200 mA h g-1 in AZIBs, which is much higher than those of other metal-based PBAs nanocubes. To further improve the long-term cycling stability of the V-PBA cathode, a high concentration water-in-salt electrolyte (4.5 M ZnSO4 + 3 M Zn(OTf)2), and a water-based eutectic electrolyte (5.55 M glucose + 3 M Zn(OTf)2) were designed to successfully inhibit the dissolution of vanadium and improve the deposition of Zn2+ onto the zinc anode. More importantly, the assembled AZIBs maintained 55% of their highest discharge specific capacity even after 10000 cycles at 10 A g-1 with superior rate capability. This study provides a new strategy for the preparation of pure PBA nanostructures and a new direction for enhancing the long-term cycling stability of PBA-based AZIBs at high current densities for industrialization prospects.

3.
Adv Mater ; : e2408396, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39101297

RESUMEN

The rechargeable aqueous ammonium ion battery shows great potential in low-cost energy storage system because of its long life and environmental friendliness. However, most inorganic host materials used in ammonium ion batteries are still limited by slow diffusion kinetics. Herein, it is identified that a 2D heteroligand-based copper-organic framework featuring numerous ammonium ion adsorption site in the π-conjugated periodic skeleton supplies multiple accessible redox-active sites for high-performance ammonium storage. Benefitting from the effective regulation of electron delocalization by heteroligand and the inherent hydrogen bond cage mechanism between ammonium ions, the resultant full battery delivers a large specific energy density of 211.84 Wh kg-1, and it can be stably operated for 12000 cycles at 5 A g-1 for over 80 days. This explanatory understanding provides a new idea for the rational design of high-performance MOF-based ammonium ion battery cathode materials for efficient energy storage and conversion in the future.

4.
Adv Sci (Weinh) ; : e2403802, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39140249

RESUMEN

Exploring new carbon-based electrode materials is quite necessary for enhancing capacitive deionization (CDI). Here, hollow mesoporous carbon spheres (HMCSs)/metal-organic frameworks (MOFs) derived carbon materials (NC(M)/HMCSs and NC(M)@HMCSs) are successfully prepared by interface-coating and space-encapsulating design, respectively. The obtained NC(M)/HMCSs and NC(M)@HMCSs possess a hierarchical hollow nanoarchitecture with abundant nitrogen doping, high specific surface area, and abundant meso-/microporous pores. These merits are conducive to rapid ion diffusion and charge transfer during the adsorption process. Compared to NC(M)/HMCSs, NC(M)@HMCSs exhibit superior electrochemical performance due to their better utilization of the internal space of hollow carbon, forming an interconnected 3D framework. In addition, the introduction of Ni ions is more conducive to the synergistic effect between ZIF(M)-derived carbon and N-doped carbon shell compared with other ions (Mn, Co, Cu ions). The resultant Ni-1-800-based CDI device exhibits excellent salt adsorption capacity (SAC, 37.82 mg g-1) and good recyclability. This will provide a new direction for the MOF nanoparticle-driven assembly strategy and the application of hierarchical hollow carbon nanoarchitecture to CDI.

5.
Nat Commun ; 15(1): 7356, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39191759

RESUMEN

The family of coinage-metal-based cyclic trinuclear complexes exhibits abundant photophysical properties, promising for diverse applications. However, their utility in biochemistry is often hindered by large particle size and strong hydrophobicity. Meanwhile, the investigation into multi-photon excited luminescence within this family remained undocumented, limiting their potential in bio-imaging. Herein, we unveil the multi-photon excited luminescent properties of pyrazolate-based trinuclear gold(I) clusters, facilitated by excimeric gold(I)···gold(I) interactions, revealing a nonlinear optical phenomenon within this family. Furthermore, to address issues of poor biocompatibility, we employ electrospinning coupled with hydroxypropyl-beta-cyclodextrin as the matrix to fabricate a flexible, durable, transparent, and red emissive film with a photoluminescence quantum yield as high as 88.3%. This strategy not only produces the film with sufficient hydrophilicity and stability, but also achieves the downsizing of trinuclear gold(I) clusters from microscale to nanoscale. Following the instantaneous dissolution of the film in the media, the released trinuclear gold(I) nanoparticles have illuminated cells and bacteria through a real-time, non-toxic, multi-photon bio-imaging approach. This achievement offers a fresh approach for utilizing coinage-metal-based cyclic trinuclear complexes in biochemical fields.


Asunto(s)
Oro , Luminiscencia , Fotones , Oro/química , Humanos , Nanopartículas del Metal/química , Pirazoles/química , Células HeLa
6.
Nat Commun ; 15(1): 7150, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39168967

RESUMEN

Despite the prevalent of hexagonal, tetragonal, and triangular pore structures in two-dimensional covalent organic frameworks (2D COFs), the pentagonal pores remain conspicuously absent. We herein present the Cairo pentagonal tessellated COFs, achieved through precisely chosen geometry and metrics of the linkers, resulting in unprecedented mcm topology. In each pentagonal structure, porphyrin units create four uniform sides around 15.5 Å with 90° angles, while tetrabiphenyl unit establish a bottom edge about 11.6 Å with 120° angles, aligning precisely with the criteria of Cairo Pentagon. According to the narrow bandgap and strong near-infrared (NIR) absorbance, as-synthesized COFs exhibit the efficient singlet oxygen (1O2) generation and photothermal conversion, resulting in NIR photothermal combined photodynamic therapy to guide cancer cell apoptosis. Mechanistic studies reveal that the good 1O2 production capability upregulates intracellular lipid peroxidation, leading to glutathione depletion, low expression of glutathione peroxidase 4, and induction of ferroptosis. The implementation of pentagonal Cairo tessellations in this work provides a promising strategy for diversifying COFs with new topologies, along with multimodal NIR phototherapy.


Asunto(s)
Apoptosis , Rayos Infrarrojos , Fotoquimioterapia , Oxígeno Singlete , Humanos , Oxígeno Singlete/metabolismo , Oxígeno Singlete/química , Fotoquimioterapia/métodos , Estructuras Metalorgánicas/química , Porfirinas/química , Animales , Peroxidación de Lípido , Línea Celular Tumoral , Ferroptosis , Fototerapia/métodos , Ratones , Glutatión/química , Glutatión/metabolismo , Fármacos Fotosensibilizantes/química , Neoplasias/terapia , Neoplasias/metabolismo
7.
Angew Chem Int Ed Engl ; : e202412890, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39148428

RESUMEN

The design of three-dimensional covalent organic frameworks (3D COFs) using linear and trigonal linkers remains challenging due to the difficulty in achieving a specific non-planar spatial arrangement with low-connectivity building units. Here, we report the novel 3D COFs with linear and trigonal linkers, termed TMB-COFs, exhibiting srs topology. The steric hindrance provides an additional force to alter the torsion angles of peripheral triangular units, guiding the linear unit to connect with the trigonal unit into 3D srs frameworks, rather than the more commonly observed two-dimensional (2D) hcb structures. Furthermore, we comprehensively examined the hydrogen peroxide photocatalytic production capacity of the TMB-COFs in comparison with analogous 2D COFs. The experimental results and DFT calculations demonstrate a significant enhancement in photocatalytic hydrogen peroxide production efficacy through framework regulation. This work emphasizes the steric configuration using low connectivity building units, offering a fresh perspective on the design and application of 3D COFs.

8.
ACS Appl Mater Interfaces ; 16(32): 42352-42362, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39080825

RESUMEN

To enhance the efficiency of oxygen reduction reaction (ORR) catalysts, precise control over the adsorption/desorption energy barriers of oxygen intermediates at atomically dispersed Fe-N-C sites is essential yet challenging. Addressing this, we employed a pyrolysis approach using a nitrogen-containing polymer to fabricate Fe single-atom (SA) catalysts embedded in a pyridinic-N enriched carbon matrix. This synthesis strategy yielded Fe SAs that demonstrated a superior electrochemical ORR performance, evidenced by an impressive half-wave potential of 0.941 V and a high limiting current density of 5.72 mA/cm2. Moreover, when applied in homemade Zn-air batteries, this premier catalyst exhibited exceptional specific capacity (720 mAh/gZn), peak power density (253 mW/cm2), and notable long-term stability. Theoretical insights revealed that the increased pyridinic-N content in the catalyst facilitated efficient electron transfer from N atoms to the Fe active sites, thus fine-tuning the d-band center and effectively controlling the adsorption energy barrier of *OH species. These mechanisms synergistically improve the ORR performance. Crucially, this fabrication method shows promise for adaptation to other transition metal-based SAs, including Co, Ni, and Cu, potentially establishing a versatile synthesis route for developing atomically dispersed catalyst systems in future applications.

9.
ACS Omega ; 9(28): 30571-30582, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39035970

RESUMEN

Ulcerative colitis (UC) is a chronic inflammatory bowel disease characterized by the disruption of the intestinal epithelial barrier. This study described the synthesis and characterization of CCM-Co-ZIF-8, a novel composite material with enzyme-like activities similar to catalase, peroxidase, and superoxide dismutase. CCM-Co-ZIF-8 demonstrated the ability to scavenge reactive oxygen species that play a critical role in UC pathogenesis. In vitro studies using lipopolysaccharide-induced RAW264.7 cells showed that CCM-Co-ZIF-8 exhibited anti-inflammatory activity by promoting the transition of macrophages from an M1 to an M2 phenotype. In vivo experiments using a mouse model of UC demonstrated that CCM-Co-ZIF-8 suppressed the expression of proinflammatory cytokines. These findings suggested that CCM-Co-ZIF-8 might hold promise as a therapeutic strategy for the treatment of UC.

10.
Angew Chem Int Ed Engl ; : e202409838, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058295

RESUMEN

Rechargeable aqueous zinc-ion (Zn-ion) batteries are widely regarded as important candidates for next-generation energy storage systems for low-cost renewable energy storage. However, the development of Zn-ion batteries is currently facing significant challenges due to uncontrollable Zn dendrite growth and severe parasitic reactions on Zn metal anodes. Herein, we report an innovative strategy to improve the performance of aqueous Zn-ion batteries by leveraging the self-assembly of bovine serum albumin (BSA) into a bilayer configuration on Zn metal anodes. BSA's hydrophilic and hydrophobic fragments form unique and intelligent ion channels, which regulate the migration of Zn ions and facilitate their desolvation process, significantly diminishing parasitic reactions on Zn anodes and leading to a uniform Zn deposition along the Zn (002) plane. Notably, the Zn||Zn symmetric cell with BSA as the electrolyte additive demonstrated a stable cycling performance for up to 2400 hours at a high current density of 10 mA cm-2. This work demonstrates the pivotal role of self-assembled protein bilayer structures in improving the durability of Zn anodes in aqueous Zn-ion batteries.

11.
Adv Mater ; : e2408317, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39081106

RESUMEN

Aqueous zinc-iodine batteries (AZIBs) are highly appealing for energy requirements owing to their safety, cost-effectiveness, and scalability. However, the inadequate redox kinetics and severe shuttling effect of polyiodide ions impede their commercial viability. Herein, several Zn-MOF-derived porous carbon materials are designed, and the further preparation of iron-doped porous carbon (Fe-N-C, M9) with varied Fe doping contents is optimized based on a facile self-assembly/carbonization approach. M9, with atomic Fe coordinated to nitrogen atoms, is employed as an efficient cathode host for AZIBs. Functional modifications of porous carbon hosts involving the doping species and levels are investigated. The adsorption tests, in situ Raman spectroscopy, and in situ UV-vis results demonstrate the adsorption capability and charge-discharge mechanism for the iodine species. Furthermore, experimental findings and theoretical analyses have proven that the redox conversion of iodine is enhanced through a physicochemical confinement effect. This study offers basic principles for the strategic design of single-atom dispersed carbon as an iodine host for high-performance AZIBs. Flexible soft-pack battery and wearable microbattery applications also have implications for future long-life aqueous battery designs.

12.
Inorg Chem ; 63(28): 13093-13099, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38953699

RESUMEN

Designing and synthesizing hollow frame structures with unique three-dimensional open structures in electrocatalysis remain a challenge. Etching is an effective method to synthesize metal-organic frameworks (MOFs) with a hollow structure and rich function. Herein, we report the design and synthesis of Hf-doped CoP hollow nanocubes by selective etching and ion exchange. Different from the traditional etching method, we used acid xylenol orange solution to etch typically the (211) crystal face of ZIF-67, obtaining the unique bell-like structure, named XO-ZIF-67. Subsequently, Hf-doped CoP hollow nanocubes were formed by Hf4+ doping and simple phosphating treatment. Electrochemical tests showed that the overpotential of the obtained catalyst is only 291 mV at the current density of 10 mA cm-2 when applied in catalyzing the oxygen evolution reaction (OER). Furthermore, the catalyst shows excellent stability when running in 1 M KOH solution for 25 h.

13.
Angew Chem Int Ed Engl ; 63(35): e202408989, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-38837505

RESUMEN

The extensive industrial applications of fuel oil, a critical strategic resource, are accompanied by significant environmental and health concerns due to the presence of sulfur-containing compounds in its composition, which result in hazardous combustion waste. Extensive research has been conducted to develop technologies for low-vulcanization fuel production to address this issue. Consequently, the investigation of catalysts for environmentally friendly and safe photocatalytic desulfurization becomes imperative. To that end, we have designed efficient MIL-101(Fe)/CQDs@g-C3N4 (MIL101/CDs-C3N4) Z-scheme heterojunction photocatalysts with high carrier separation and mobility through a thermal polymerization-hydrothermal strategy. The high concentration of photogenerated carriers facilitates the activation of oxygen and H2O2, leading to increased production of ROS (⋅O2 -, ⋅OH, h+), thereby enhancing the photocatalytic desulfurization (PODS). Additionally, DFT (Density functional theory) calculations were utilized to determine the electron migration pathways of the catalysts and adsorption energies of DBT (dibenzothiophene). Moreover, Gibbs free energy calculations indicated that MIL101/CDs-C3N4 exhibited the lowest activation energy for oxygen and H2O2. The mechanism of photocatalytic desulfurization was proposed through a combination of theoretical calculations and experimental studies. This study provides guidance for the development of MOF-based Z-scheme systems and their practical application in desulfurization processes.

14.
ChemSusChem ; : e202400890, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38924355

RESUMEN

Manganese-based compounds, especially manganese oxides, are one of the most exceptional electrode materials. Specifically, manganese oxides have gained significant interest owing to their unique crystal structures, high theoretical capacity, abundant natural availability and eco-friendly nature. However, as transition metal semiconductors, manganese oxide possess low electrical conductivity, limited rate capacity, and suboptical cycle stability. Thus, combining manganese oxides with carbon or other metallic materials can significantly improve their electrochemical performance. These composites increase active sites and conductivity, thereby improving electrode reaction kinetics, cycle stability, and lifespan of supercapacitors (SCs) and batteries. This paper reviews the latest applications of Mn-based cathodes in SCs and advanced batteries. Moreover, the energy storage mechanisms were also proposed. In this review, the development prospects and challenges for advanced energy storage applications of Mn-based cathodes are summarized.

15.
Angew Chem Int Ed Engl ; 63(36): e202410255, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38881320

RESUMEN

Metal-organic frameworks (MOFs) are considered as a promising candidate for advancing energy storage owing to their intrinsic multi-channel architecture, high theoretical capacity, and precise adjustability. However, the low conductivity and poor structural stability lead to unsatisfactory rate and cycling performance, greatly hindering their practical application. Herein, we propose a sea urchin-like Co-ZIF-L superstructure using molecular template to induce self-assembly followed by ion exchange method, which shows improved conductivity, successive channels, and high stability. The ion exchange can gradually etch the superstructure, leading to the reconstruction of Co-ZIF-L with three-dimensional (3D) cross-linked ultrathin porous nanosheets. Moreover, the precise control of Co to Ni ratios can construct effective micro-electric field and synergistically enhance the rapid transfer of electrons and electrolyte ions, improving the conductivity and stability of CoNi-ZIF-L. The Co6.53Ni-ZIF-L electrode exhibits a high specific capacity (602 F g-1 at 1 A g-1) and long cycling stability (95.3 % retention after 4,000 cycles at 5 A g-1). The Co6.53Ni-ZIF-L//AC asymmetric flexible supercapacitor employing gel electrolyte also exhibits excellent cycling stability (93.3 % retention after 4000 cycles at 5 A g-1). This discovery provides valuable insights for electrode material selection and energy storage efficiency improvement.

16.
Nanoscale ; 16(26): 12380-12396, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38888150

RESUMEN

Micro-supercapacitors (MSCs) have attracted significant attention for potential applications in miniaturized electronics due to their high power density, rapid charge/discharge rates, and extended lifespan. Despite the unique properties of low-dimensional nanomaterials, which hold tremendous potential for revolutionary applications, effectively integrating these attributes into MSCs presents several challenges. 3D printing is rapidly emerging as a key player in the fabrication of advanced energy storage devices. Its ability to design, prototype, and produce functional devices incorporating low-dimensional nanomaterials positions it as an influential technology. In this review, we delve into recent advancements and innovations in micro-supercapacitor manufacturing, with a specific focus on the incorporation of low-dimensional nanomaterials using direct ink writing (DIW) 3D printing techniques. We highlight the distinct advantages offered by low-dimensional nanomaterials, from quantum effects in 0D nanoparticles that result in high capacitance values to rapid electron and ion transport in 1D nanowires, as well as the extensive surface area and mechanical flexibility of 2D nanosheets. Additionally, we address the challenges encountered during the fabrication process, such as material viscosity, printing resolution, and seamless integration of active materials with current collectors. This review highlights the remarkable progress in the energy storage sector, demonstrating how the synergistic use of low-dimensional nanomaterials and 3D printing technologies not only overcomes existing limitations but also opens new avenues for the development and production of advanced micro-supercapacitors. The convergence of low-dimensional nanomaterials and DIW 3D printing heralds the advent of the next generation of energy storage devices, making a significant contribution to the field and laying the groundwork for future innovations.

17.
Nanoscale ; 16(24): 11429-11456, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38855977

RESUMEN

Covalent organic frameworks (COFs), characterized by well-ordered pores, large specific surface area, good stability, high precision, and flexible design, are a promising material for batteries and have received extensive attention from researchers in recent years. Compared with inorganic materials, COFs can construct elastic frameworks with better structural stability, and their chemical compositions and structures can be precisely adjusted and functionalized at the molecular level, providing an open pathway for the convenient transfer of ions. In this review, the energy storage mechanism and unique superiority of COFs and COF composites as electrodes, separators and electrolytes for rechargeable batteries are discussed in detail. Special emphasis is placed on the relationship between the establishment of COF structures and their electrochemical performance in different batteries. Finally, this review summarizes the challenges and prospects of COFs and COF composites in battery equipment.

18.
J Colloid Interface Sci ; 673: 807-816, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38906002

RESUMEN

PBA frameworks have stood out among metal-organic frameworks because of their easy preparation, excellent stability, porous structures, and rich redox properties. Unfortunately, their non-ideal conductivity and significant volume expansion during cycling prevent more widespread application in alkali-metal-ion (Li+, Na+, and K+) batteries. By changing the type and molar ratio of metal ions, Rubik's PBA frameworks with infinite structural variations were obtained in this study, just like the Rubik's cube undergoes infinite changes during the rotation. X-ray adsorption fine structure measurements have documented the existence and determined the coordination environment of the metal ions in the Rubik's PBA framework. Benefiting from the more stable Rubik's cube structures with diverse composition, enhanced conductivity, and greater adsorption capacity, the obtained Rubik's cubes CoM-PBA anodes, especially CoZn-PBA deliver the enhanced cycling and rate performance in all the alkali-metal-ion batteries. The findings are supported by density functional theory calculations. Ex-situ X-ray photoelectron spectroscopy, and in-situ X-ray diffraction measurements were undertaken to explore the storage mechanism of CoZn-PBA anodes. Our results further demonstrate that the Rubik's cube PBA framework-based materials could be widely applied in the field of alkali-metal-ion batteries.

19.
Chem Sci ; 15(22): 8422-8429, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38846403

RESUMEN

Designing artificial photocatalysts for CO2 reduction is challenging, mainly due to the intrinsic difficulty of making multiple functional units cooperate efficiently. Herein, three-dimensional metal covalent organic frameworks (3D MCOFs) were employed as an innovative platform to integrate a strong Ru(ii) light-harvesting unit, an active Re(i) catalytic center, and an efficient charge separation configuration for photocatalysis. The photosensitive moiety was precisely stabilized into the covalent skeleton by using a rational-designed Ru(ii) complex as one of the building units, while the Re(i) center was linked via a shared bridging ligand with an Ru(ii) center, opening an effective pathway for their electronic interaction. Remarkably, the as-synthesized MCOF exhibited impressive CO2 photoreduction activity with a CO generation rate as high as 1840 µmol g-1 h-1 and 97.7% selectivity. The femtosecond transient absorption spectroscopy combined with theoretical calculations uncovered the fast charge-transfer dynamics occurring between the photoactive and catalytic centers, providing a comprehensive understanding of the photocatalytic mechanism. This work offers in-depth insight into the design of MCOF-based photocatalysts for solar energy utilization.

20.
Small ; : e2401587, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38855999

RESUMEN

Heterostructured materials commonly consist of bifunctions due to the different ingredients. For host material in the sulfur cathode of lithium-sulfur (Li-S) batteries, the chemical adsorption and catalytic activity for lithium polysulfides (LiPS) are important. This work obtains a Ni5P2-Ni nanoparticle (Ni5P2-NiNPs) heterostructure through a confined self-reduction method followed by an in situ phosphorization process using Al/Ni-MOF as precursors. The Ni5P2-Ni heterostructure not only has strong chemical adsorption, but also can effectively catalyze LiPS conversion. Furthermore, the synthetic route can keep Ni5P2-NiNPs inside of the nanocomposites, which have structural stability, high conductivity, and efficient adsorption/catalysis in LiPS conversion. These advantages make the assembled Li-S battery deliver a reversible specific capacity of 619.7 mAh g- 1 at 0.5 C after 200 cycles. The in situ ultraviolet-visible technique proves the catalytic effect of Ni5P2-Ni heterostructure on LiPS conversion during the discharge process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA