Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Plant Cell Environ ; 47(7): 2362-2376, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38515393

RESUMEN

Powdery mildew-resistant barley (Hordeum vulgare) and Arabidopsis thaliana mlo mutant plants exhibit pleiotropic phenotypes such as the spontaneous formation of callose-rich cell wall appositions and early leaf chlorosis and necrosis, indicative of premature leaf senescence. The exogenous factors governing the occurrence of these undesired side effects remain poorly understood. Here, we characterised the formation of these symptoms in detail. Ultrastructural analysis revealed that the callose-rich cell wall depositions spontaneously formed in A. thaliana mlo mutants are indistinguishable from those induced by the bacterial pattern epitope, flagellin 22 (flg22). We further found that increased plant densities during culturing enhance the extent of the leaf senescence syndrome in A. thaliana mlo mutants. Application of a liquid fertiliser rescued the occurrence of leaf chlorosis and necrosis in both A. thaliana and barley mlo mutant plants. Controlled fertilisation experiments uncovered nitrogen as the macronutrient whose deficiency promotes the extent of pleiotropic phenotypes in A. thaliana mlo mutants. Light intensity and temperature had a modulatory impact on the incidence of leaf necrosis in the case of barley mlo mutant plants. Collectively, our data indicate that the development of pleiotropic phenotypes associated with mlo mutants is governed by various exogenous factors.


Asunto(s)
Arabidopsis , Hordeum , Mutación , Nitrógeno , Fenotipo , Enfermedades de las Plantas , Hojas de la Planta , Hordeum/microbiología , Hordeum/genética , Arabidopsis/genética , Arabidopsis/microbiología , Nitrógeno/metabolismo , Enfermedades de las Plantas/microbiología , Hojas de la Planta/microbiología , Hojas de la Planta/genética , Ascomicetos/fisiología , Resistencia a la Enfermedad/genética , Pleiotropía Genética , Glucanos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Pared Celular/metabolismo , Luz , Fertilizantes
2.
New Phytol ; 241(2): 567-577, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37985402

RESUMEN

According to current textbooks, the principal task of transfer and ribosomal RNAs (tRNAs and rRNAs, respectively) is synthesizing proteins. During the last decade, additional cellular roles for precisely processed tRNA and rRNAs fragments have become evident in all kingdoms of life. These RNA fragments were originally overlooked in transcriptome datasets or regarded as unspecific degradation products. Upon closer inspection, they were found to engage in a variety of cellular processes, in particular the modulation of translation and the regulation of gene expression by sequence complementarity- and Argonaute protein-dependent gene silencing. More recently, the presence of tRNA and rRNA fragments has also been recognized in the context of plant-microbe interactions, both on the plant and the microbial side. While most of these fragments are likely to affect endogenous processes, there is increasing evidence for their transfer across kingdoms in the course of such interactions; these processes may involve mutual exchange in association with extracellular vesicles. Here, we summarize the state-of-the-art understanding of tRNA and rRNA fragment's roles in the context of plant-microbe interactions, their potential biogenesis, presumed delivery routes, and presumptive modes of action.


Asunto(s)
ARN Ribosómico , ARN de Transferencia , ARN Ribosómico/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , ARN
3.
Plant Cell ; 36(4): 1007-1035, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38124479

RESUMEN

Exocyst component of 70-kDa (EXO70) proteins are constituents of the exocyst complex implicated in vesicle tethering during exocytosis. MILDEW RESISTANCE LOCUS O (MLO) proteins are plant-specific calcium channels and some MLO isoforms enable fungal powdery mildew pathogenesis. We here detected an unexpected phenotypic overlap of Arabidopsis thaliana exo70H4 and mlo2 mlo6 mlo12 triple mutant plants regarding the biogenesis of leaf trichome secondary cell walls. Biochemical and Fourier transform infrared spectroscopic analyses corroborated deficiencies in the composition of trichome cell walls in these mutants. Transgenic lines expressing fluorophore-tagged EXO70H4 and MLO exhibited extensive colocalization of these proteins. Furthermore, mCherry-EXO70H4 mislocalized in trichomes of the mlo triple mutant and, vice versa, MLO6-GFP mislocalized in trichomes of the exo70H4 mutant. Expression of GFP-marked PMR4 callose synthase, a known cargo of EXO70H4-dependent exocytosis, revealed reduced cell wall delivery of GFP-PMR4 in trichomes of mlo triple mutant plants. In vivo protein-protein interaction assays in plant and yeast cells uncovered isoform-preferential interactions between EXO70.2 subfamily members and MLO proteins. Finally, exo70H4 and mlo6 mutants, when combined, showed synergistically enhanced resistance to powdery mildew attack. Taken together, our data point to an isoform-specific interplay of EXO70 and MLO proteins in the modulation of trichome cell wall biogenesis and powdery mildew susceptibility.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Tricomas/genética , Tricomas/metabolismo , Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Pared Celular/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Enfermedades de las Plantas/microbiología , Resistencia a la Enfermedad/genética , Proteínas de Transporte Vesicular/metabolismo
4.
Mob DNA ; 14(1): 17, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37964319

RESUMEN

BACKGROUND: The genome of the obligate biotrophic phytopathogenic barley powdery mildew fungus Blumeria hordei is inflated due to highly abundant and possibly active transposable elements (TEs). In the absence of the otherwise common repeat-induced point mutation transposon defense mechanism, noncoding RNAs could be key for regulating the activity of TEs and coding genes during the pathogenic life cycle. RESULTS: We performed time-course whole-transcriptome shotgun sequencing (RNA-seq) of total RNA derived from infected barley leaf epidermis at various stages of fungal pathogenesis and observed significant transcript accumulation and time point-dependent regulation of TEs in B. hordei. Using a manually curated consensus database of 344 TEs, we discovered phased small RNAs mapping to 104 consensus transposons, suggesting that RNA interference contributes significantly to their regulation. Further, we identified 5,127 long noncoding RNAs (lncRNAs) genome-wide in B. hordei, of which 823 originated from the antisense strand of a TE. Co-expression network analysis of lncRNAs, TEs, and coding genes throughout the asexual life cycle of B. hordei points at extensive positive and negative co-regulation of lncRNAs, subsets of TEs and coding genes. CONCLUSIONS: Our work suggests that similar to mammals and plants, fungal lncRNAs support the dynamic modulation of transcript levels, including TEs, during pivotal stages of host infection. The lncRNAs may support transcriptional diversity and plasticity amid loss of coding genes in powdery mildew fungi and may give rise to novel regulatory elements and virulence peptides, thus representing key drivers of rapid evolutionary adaptation to promote pathogenicity and overcome host defense.

5.
Sci Signal ; 16(812): eadg2621, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37988455

RESUMEN

Mammalian macrophage migration inhibitory factor (MIF) and its paralog, D-dopachrome tautomerase, are multifunctional inflammatory cytokines. Plants have orthologous MIF and D-dopachrome tautomerase-like (MDL) proteins that mimic some of the effects of MIF on immune cells in vitro. We explored the structural and functional similarities between the three Arabidopsis thaliana MDLs and MIF. X-ray crystallography of the MDLs revealed high structural similarity between MDL and MIF homotrimers and suggested a potential explanation for the lack of tautomerase activity in the MDLs. MDL1 and MDL2 interacted with each other and with MIF in vitro, in yeast, and in plant leaves and formed hetero-oligomeric complexes with MIF in vitro. The MDLs stimulated signaling through the MIF receptors CXCR2 or CXCR4 and enhanced the responses to MIF in a yeast reporter system, in human neutrophils, and in human lung epithelial cells. Pharmacological inhibitors that disrupted MIF activity or prevented the formation of MIF-MDL hetero-oligomers blocked the observed synergism. These findings demonstrate that MDLs can enhance cellular responses to MIF, which may have functional implications in tissues exposed to MDLs from the diet or environment.


Asunto(s)
Factores Inhibidores de la Migración de Macrófagos , Animales , Humanos , Factores Inhibidores de la Migración de Macrófagos/genética , Factores Inhibidores de la Migración de Macrófagos/química , Proteínas de Plantas , Receptores CXCR4/genética , Receptores CXCR4/metabolismo , Saccharomyces cerevisiae/metabolismo , Neutrófilos/metabolismo , Mamíferos/metabolismo , Oxidorreductasas Intramoleculares/genética
6.
Biochem J ; 480(20): 1615-1638, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37767715

RESUMEN

Mildew resistance locus o (MLO) proteins are heptahelical integral membrane proteins of which some isoforms act as susceptibility factors for the powdery mildew pathogen. In many angiosperm plant species, loss-of-function mlo mutants confer durable broad-spectrum resistance against the fungal disease. Barley Mlo is known to interact via a cytosolic carboxyl-terminal domain with the intracellular calcium sensor calmodulin (CAM) in a calcium-dependent manner. Site-directed mutagenesis has revealed key amino acid residues in the barley Mlo calmodulin-binding domain (CAMBD) that, when mutated, affect the MLO-CAM association. We here tested the respective interaction between Arabidopsis thaliana MLO2 and CAM2 using seven different types of in vitro and in vivo protein-protein interaction assays. In each assay, we deployed a wild-type version of either the MLO2 carboxyl terminus (MLO2CT), harboring the CAMBD, or the MLO2 full-length protein and corresponding mutant variants in which two key residues within the CAMBD were substituted by non-functional amino acids. We focused in particular on the substitution of two hydrophobic amino acids (LW/RR mutant) and found in most protein-protein interaction experiments reduced binding of CAM2 to the corresponding MLO2/MLO2CT-LW/RR mutant variants in comparison with the respective wild-type versions. However, the Ura3-based yeast split-ubiquitin system and in planta bimolecular fluorescence complementation (BiFC) assays failed to indicate reduced CAM2 binding to the mutated CAMBD. Our data shed further light on the interaction of MLO and CAM proteins and provide a comprehensive comparative assessment of different types of protein-protein interaction assays with wild-type and mutant versions of an integral membrane protein.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Calmodulina , Dominios y Motivos de Interacción de Proteínas , Arabidopsis/genética , Arabidopsis/metabolismo , Calcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas de Arabidopsis/metabolismo , Mapeo de Interacción de Proteínas/métodos
7.
Cell Mol Life Sci ; 80(8): 198, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37418047

RESUMEN

Many cell biological facts that can be found in dedicated scientific textbooks are based on findings originally made in humans and/or other mammals, including respective tissue culture systems. They are often presented as if they were universally valid, neglecting that many aspects differ-in part considerably-between the three major kingdoms of multicellular eukaryotic life, comprising animals, plants and fungi. Here, we provide a comparative cross-kingdom view on the basic cell biology across these lineages, highlighting in particular essential differences in cellular structures and processes between phyla. We focus on key dissimilarities in cellular organization, e.g. regarding cell size and shape, the composition of the extracellular matrix, the types of cell-cell junctions, the presence of specific membrane-bound organelles and the organization of the cytoskeleton. We further highlight essential disparities in important cellular processes such as signal transduction, intracellular transport, cell cycle regulation, apoptosis and cytokinesis. Our comprehensive cross-kingdom comparison emphasizes overlaps but also marked differences between the major lineages of the three kingdoms and, thus, adds to a more holistic view of multicellular eukaryotic cell biology.


Asunto(s)
Eucariontes , Células Eucariotas , Animales , Humanos , Plantas , Hongos , Transducción de Señal , Mamíferos
8.
Mol Ecol ; 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36862075

RESUMEN

The powdery mildew fungi (Erysiphaceae) are globally distributed plant pathogens with a range of more than 10,000 plant hosts. In this review, we discuss the long- and short-term evolution of these obligate biotrophic fungi and outline their diversity with respect to morphology, lifestyle, and host range. We highlight their remarkable ability to rapidly overcome plant immunity, evolve fungicide resistance, and broaden their host range, for example, through adaptation and hybridization. Recent advances in genomics and proteomics, particularly in cereal powdery mildews (genus Blumeria), provided first insights into mechanisms of genomic adaptation in these fungi. Transposable elements play key roles in shaping their genomes, where even close relatives exhibit diversified patterns of recent and ongoing transposon activity. These transposons are ubiquitously distributed in the powdery mildew genomes, resulting in a highly adaptive genome architecture lacking obvious regions of conserved gene space. Transposons can also be neofunctionalized to encode novel virulence factors, particularly candidate secreted effector proteins, which may undermine the plant immune system. In cereals like barley and wheat, some of these effectors are recognized by plant immune receptors encoded by resistance genes with numerous allelic variants. These effectors determine incompatibility ("avirulence") and evolve rapidly through sequence diversification and copy number variation. Altogether, powdery mildew fungi possess plastic genomes that enable their fast evolutionary adaptation towards overcoming plant immunity, host barriers, and chemical stress such as fungicides, foreshadowing future outbreaks, host range shifts and expansions as well as potential pandemics by these pathogens.

9.
Mol Plant Pathol ; 24(6): 570-587, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36917011

RESUMEN

The establishment of host-microbe interactions requires molecular communication between both partners, which may involve the mutual transfer of noncoding small RNAs. Previous evidence suggests that this is also true for powdery mildew disease in barley, which is caused by the fungal pathogen Blumeria hordei. However, previous studies lacked spatial resolution regarding the accumulation of small RNAs upon host infection by B. hordei. Here, we analysed site-specific small RNA repertoires in the context of the barley-B. hordei interaction. To this end, we dissected infected leaves into separate fractions representing different sites that are key to the pathogenic process: epiphytic fungal mycelium, infected plant epidermis, isolated haustoria, a vesicle-enriched fraction from infected epidermis, and extracellular vesicles. Unexpectedly, we discovered enrichment of specific 31-33-base 5'-terminal fragments of barley 5.8S ribosomal RNA in extracellular vesicles and infected epidermis, as well as particular B. hordei transfer RNA fragments in haustoria. We describe canonical small RNAs from both the plant host and the fungal pathogen that may confer cross-kingdom RNA interference activity. Interestingly, we found first evidence of phased small interfering RNAs in B. hordei, a feature usually attributed to plants, which may be associated with the posttranscriptional control of fungal coding genes, pseudogenes, and transposable elements. Our data suggest a key and possibly site-specific role for cross-kingdom RNA interference and noncoding RNA fragments in the host-pathogen communication between B. hordei and its host barley.


Asunto(s)
Ascomicetos , Hordeum , ARN de Hongos/genética , Ascomicetos/genética , Ascomicetos/metabolismo , Hordeum/microbiología , ARN de Transferencia , Interferencia de ARN , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/metabolismo
10.
bioRxiv ; 2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36747653

RESUMEN

Mildew resistance locus o (MLO) proteins are heptahelical integral membrane proteins of which some isoforms act as susceptibility factors for the fungal powdery mildew pathogen. In many angiosperm plant species, loss-of-function mlo mutants confer durable broad-spectrum resistance against the powdery mildew disease. Barley Mlo is known to interact via a cytosolic carboxyl-terminal domain with the intracellular calcium sensor calmodulin (CAM) in a calcium-dependent manner. Site-directed mutagenesis has revealed key amino acid residues in the barley Mlo calcium-binding domain (CAMBD) that, when mutated, affect the MLO-CAM association. We here tested the respective interaction between Arabidopsis thaliana MLO2 and CAM2 using seven different types of in vitro and in vivo protein-protein interaction assays. In each assay, we deployed a wild-type version of either the MLO2 carboxyl terminus (MLO2 CT ), harboring the CAMBD, or the MLO2 full-length protein and corresponding mutant variants in which two key residues within the CAMBD were substituted by non-functional amino acids. We focused in particular on the substitution of two hydrophobic amino acids (LW/RR mutant) and found in most protein-protein interaction experiments reduced binding of CAM2 to the corresponding MLO2/MLO2 CT LW/RR mutant variants in comparison to the respective wild-type versions. However, the Ura3-based yeast split-ubiquitin system and in planta bimolecular fluorescence complementation (BiFC) assays failed to indicate reduced CAM2 binding to the mutated CAMBD. Our data shed further light on the interaction of MLO and CAM proteins and provide a comprehensive comparative assessment of different types of protein-protein interaction assays with wild-type and mutant versions of an integral membrane protein.

11.
Data Brief ; 46: 108897, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36817732

RESUMEN

Trichomes are highly specialized uni- or multicellular outgrowths of epidermal cells of plant organs that, in the case of leaves, contribute to plant resistance against abiotic and biotic stress. The model plant Arabidopsis thaliana features single-celled non-glandular rosette leaf trichomes that are dispensable under laboratory conditions. Trichomes have therefore become a successful model to identify plant genes involved in cellular differentiation and cell wall development. We have recently devised an improved method for the enrichment of plant leaf trichomes that relies on the biochemical weakening of the trichome-leaf junctions and a magnetic stirrer-based mechanical stimulus for trichome release followed by density gradient purification of trichomes. Here we provide detailed information on a label-free quantitative (LFQ) shotgun proteomics dataset collected at four stages while applying this protocol to isolate trichomes from rosette leaves of A. thaliana, from (i) whole seedlings before enrichment, from (ii) trichome-depleted material after separation, from (iii) detached trichomes, and from (iv) enriched trichomes after sucrose density gradient centrifugation. Proteins were extracted, digested with trypsin and the resulting peptides identified by nanoflow-chromatography coupled to tandem mass spectrometry. This dataset informs on proteins and biochemical processes present and/or enriched in A. thaliana rosette leaf trichomes, complementing recent large-scale proteome maps. The data further enables comparative analysis with trichome proteomic data from other plant species, may be reanalyzed using different software packages or search settings, and may serve as a reference benchmark for future method refinement.

12.
Curr Protoc ; 2(9): e541, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36066280

RESUMEN

Trichomes are fine outgrowths on the surface of aerial plant organs which play a role in protecting plants against water loss, UV radiation, and herbivore feeding. Throughout the years, trichomes have become a popular paradigm in biological research. For example, trichomes on rosette leaves of the reference plant Arabidopsis thaliana have been used as a model to investigate cell development, cell differentiation, and, more recently, cell wall biogenesis. State of the art -omics studies on specific cell types or tissues often require physical separation, enrichment, and purification. This, of course, also applies to leaf trichomes, and various methods have thus been proposed to separate trichomes and leaf tissue. Though most of these methods are indeed suitable for trichome isolation, they suffer in part from tedious operating procedures, low yield, poor sample purity, and reduced trichome integrity. We have thus revised a previously reported method for trichome isolation, and report here an efficient and scalable procedure for the isolation and gradient centrifugation-based purification of high-quality A. thaliana trichomes. We describe the preparation of plant material and trichome release, which is based on prolonged gentle agitation of plant seedlings in the presence of a cation-chelating agent that weakens trichome-leaf interactions. We also outline the steps for the subsequent recovery and purification of the isolated crude trichome fraction, which is based on the use of discontinuous sucrose gradient centrifugation. In addition to A. thaliana, we have found that this procedure can be applied to release and enrich glandular and non-glandular trichomes from various species, including Solanum lycopersicum and Nicotiana benthamiana. The resulting purified leaf trichomes can be subjected to different types of bioassays, including histochemistry, biochemical quantification of cell wall monosaccharides, and transcriptomics, as well as proteomic profiling. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Preparation of plant material for release and enrichment of A. thaliana trichomes Basic Protocol 2: Purification of A. thaliana trichomes by density gradient centrifugation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Hojas de la Planta , Proteómica , Tricomas/metabolismo
13.
Plant J ; 112(1): 84-103, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35916711

RESUMEN

Loss-of-function alleles of plant MLO genes confer broad-spectrum resistance to powdery mildews in many eudicot and monocot species. Although barley (Hordeum vulgare) mlo mutants have been used in agriculture for more than 40 years, understanding of the molecular principles underlying this type of disease resistance remains fragmentary. Forward genetic screens in barley have revealed mutations in two Required for mlo resistance (Ror) genes that partially impair immunity conferred by mlo mutants. While Ror2 encodes a soluble N-ethylmaleimide-sensitive factor-attached protein receptor (SNARE), the identity of Ror1, located at the pericentromeric region of barley chromosome 1H, remained elusive. We report the identification of Ror1 based on combined barley genomic sequence information and transcriptomic data from ror1 mutant plants. Ror1 encodes the barley class XI myosin Myo11A (HORVU.MOREX.r3.1HG0046420). Single amino acid substitutions of this myosin, deduced from non-functional ror1 mutant alleles, map to the nucleotide-binding region and the interface between the relay-helix and the converter domain of the motor protein. Ror1 myosin accumulates transiently in the course of powdery mildew infection. Functional fluorophore-labeled Ror1 variants associate with mobile intracellular compartments that partially colocalize with peroxisomes. Single-cell expression of the Ror1 tail region causes a dominant-negative effect that phenocopies ror1 loss-of-function mutants. We define a myosin motor for the establishment of mlo-mediated resistance, suggesting that motor protein-driven intracellular transport processes are critical for extracellular immunity, possibly through the targeted transfer of antifungal and/or cell wall cargoes to pathogen contact sites.


Asunto(s)
Hordeum , Antifúngicos , Hordeum/genética , Hordeum/metabolismo , Miosinas/genética , Miosinas/metabolismo , Proteínas Sensibles a N-Etilmaleimida/metabolismo , Nucleótidos/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas SNARE/metabolismo
14.
Methods Mol Biol ; 2523: 63-77, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35759191

RESUMEN

One major threat to plant cultivation are fungal pathogens, which can cause substantial yield losses in agriculture. As an example, cereal powdery mildew fungi such as the barley (Hordeum vulgare) pathogen, Blumeria graminis f. sp. hordei (Bgh), are among the ten most relevant fungal plant pathogens in molecular plant pathology and can lead to yield losses of up to 30%. Plant Mildew resistance Locus O (MLO) genes are required for successful colonization of plants by powdery mildew fungi. Accordingly, loss-of-function mlo mutants confer durable resistance against powdery mildew fungi in many plant species. In the case of barley, mlo-based resistance has been used for more than 40 years in agriculture without powdery mildew fungi effectively overcoming this kind of immunity. However, the molecular basis of mlo resistance and function(s) of the transmembrane Mlo protein(s) are still incompletely understood. The generation of transgenic barley plants to study the plant immune response and the involvement of Mlo therein is time-consuming and challenging. Therefore, transient gene expression via gene gun-mediated particle bombardment became a popular, easy, and efficient tool to investigate different aspects of plant defense responses in barley. Since Bgh fails to penetrate leaf epidermal cells of mlo mutants, single-cell complementation upon biolistic transformation resulting in (over-)expression of Mlo can be used to characterize the Mlo protein functionally in vivo. In this chapter, we describe in detail the gene gun-mediated transient expression of Mlo in barley leaf epidermal cells followed by powdery mildew inoculation and the subsequent microscopic evaluation. However, gene gun-mediated transient gene expression may be also used to address other research questions or to transform the epidermal tissues of other plant organs and/or species.


Asunto(s)
Ascomicetos , Hordeum , Ascomicetos/genética , Ascomicetos/metabolismo , Expresión Génica , Hordeum/metabolismo , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo
15.
Front Microbiol ; 13: 903024, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35756050

RESUMEN

Powdery mildew fungi (Erysiphaceae), common obligate biotrophic pathogens of many plants, including important agricultural and horticultural crops, represent a monophyletic lineage within the Ascomycota. Within the Erysiphaceae, molecular phylogenetic relationships and DNA-based species and genera delimitations were up to now mostly based on nuclear ribosomal DNA (nrDNA) phylogenies. This is the first comprehensive genome-scale phylogenetic analysis of this group using 751 single-copy orthologous sequences extracted from 24 selected powdery mildew genomes and 14 additional genomes from Helotiales, the fungal order that includes the Erysiphaceae. Representative genomes of all powdery mildew species with publicly available whole-genome sequencing (WGS) data that were of sufficient quality were included in the analyses. The 24 powdery mildew genomes included in the analysis represented 17 species belonging to eight out of 19 genera recognized within the Erysiphaceae. The epiphytic genera, all but one represented by multiple genomes, belonged each to distinct, well-supported lineages. Three hemiendophytic genera, each represented by a single genome, together formed the hemiendophytic lineage. Out of the 14 other taxa from the Helotiales, Arachnopeziza araneosa, a saprobic species, was the only taxon that grouped together with the 24 genome-sequenced powdery mildew fungi in a monophyletic clade. The close phylogenetic relationship between the Erysiphaceae and Arachnopeziza was revealed earlier by a phylogenomic study of the Leotiomycetes. Further analyses of powdery mildew and Arachnopeziza genomes may discover signatures of the evolutionary processes that have led to obligate biotrophy from a saprobic way of life. A separate phylogeny was produced using the 18S, 5.8S, and 28S nrDNA sequences of the same set of powdery mildew specimens and compared to the genome-scale phylogeny. The nrDNA phylogeny was largely congruent to the phylogeny produced using 751 orthologs. This part of the study has revealed multiple contamination and other quality issues in some powdery mildew genomes. We recommend that the presence of 28S, internal transcribed spacer (ITS), and 18S nrDNA sequences in powdery mildew WGS datasets that are identical to those determined by Sanger sequencing should be used to assess the quality of assemblies, in addition to the commonly used Benchmarking Universal Single-Copy Orthologs (BUSCO) values.

16.
Immunology ; 166(3): 287-298, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35416298

RESUMEN

Gram-negative Pseudomonas bacteria are largely harmless saprotrophs, but some species can be potent pathogens of both plants and mammals. Macrophage migration-inhibitory factor (MIF) and its homologue D-dopachrome tautomerase (D-DT, also referred to as MIF-2) are multifunctional proteins that in addition to their intracellular functions also serve as extracellular signalling molecules (cytokines) in orchestrating mammalian immune responses. It recently emerged that plants also possess MIF-like proteins, termed MIF/D-DT-like (MDL) proteins. We here provide a comparative cross-kingdom view on the immunomodulatory role of MIF and MDL proteins during Pseudomon as infections in mammals and plants. Although in both kingdoms the lack of MIF/MDL proteins is associated with a reduction in bacterial load and disease symptoms, the underlying molecular principles seem to be different. We provide a perspective for future research activities to unravel additional commonalities and differences in the MIF/MDL-mediated adjustment of antibacterial immune activities.


Asunto(s)
Factores Inhibidores de la Migración de Macrófagos , Infecciones por Pseudomonas , Animales , Inmunidad , Factores Inhibidores de la Migración de Macrófagos/genética , Factores Inhibidores de la Migración de Macrófagos/metabolismo , Mamíferos/metabolismo , Unión Proteica
17.
Plant Methods ; 18(1): 12, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35086542

RESUMEN

BACKGROUND: Rosette leaf trichomes of Arabidopsis thaliana have been broadly used to study cell development, cell differentiation and, more recently, cell wall biogenesis. However, trichome-specific biochemical or -omics analyses require a proper separation of trichomes from residual plant tissue. Thus, different strategies were proposed in the past for trichome isolation, which mostly rely on harsh conditions and suffer from low yield, thereby limiting the spectrum of downstream analyses. RESULTS: To take trichome-leaf separation to the next level, we revised a previously proposed method for isolating A. thaliana trichomes by optimizing the mechanical and biochemical specifications for trichome release. We additionally introduced a density gradient centrifugation step to remove residual plant debris. We found that prolonged, yet mild seedling agitation increases the overall trichome yield by more than 60% compared to the original protocol. We noticed that subsequent density gradient centrifugation further visually enhances trichome purity, which may be advantageous for downstream analyses. Gene expression analysis by quantitative reverse transcriptase-polymerase chain reaction validated a substantial enrichment upon purification of trichomes by density gradient centrifugation. Histochemical and biochemical investigation of trichome cell wall composition indicated that unlike the original protocol gentle agitation during trichome release largely preserves trichome integrity. We used enriched and density gradient-purified trichomes for proteomic analysis in comparison to trichome-depleted leaf samples and present a comprehensive reference data set of trichome-resident and -enriched proteins. Collectively we identified 223 proteins that are highly enriched in trichomes as compared to trichome-depleted leaves. We further demonstrate that the procedure can be applied to retrieve diverse glandular and non-glandular trichome types from other plant species. CONCLUSIONS: We provide an advanced method for the isolation of A. thaliana leaf trichomes that outcompetes previous procedures regarding yield and purity. Due to the large amount of high-quality trichomes our method enabled profound insights into the so far largely unexplored A. thaliana trichome proteome. We anticipate that our protocol will be of use for a variety of downstream analyses, which are expected to shed further light on the biology of leaf trichomes in A. thaliana and possibly other plant species.

18.
Plant Physiol ; 188(3): 1419-1434, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-34958371

RESUMEN

The plant immune system is well equipped to ward off the attacks of different types of phytopathogens. It primarily relies on two types of immune sensors-plasma membrane-resident receptor-like kinases and intracellular nucleotide-binding domain leucine-rich repeat (NLRs) receptors that engage preferentially in pattern- and effector-triggered immunity, respectively. Delicate fine-tuning, in particular of the NLR-governed branch of immunity, is key to prevent inappropriate and deleterious activation of plant immune responses. Inadequate NLR allele constellations, such as in the case of hybrid incompatibility, and the mis-activation of NLRs or the absence or modification of proteins guarded by these NLRs can result in the spontaneous initiation of plant defense responses and cell death-a phenomenon referred to as plant autoimmunity. Here, we review recent insights augmenting our mechanistic comprehension of plant autoimmunity. The recent findings broaden our understanding regarding hybrid incompatibility, unravel candidates for proteins likely guarded by NLRs and underline the necessity for the fine-tuning of NLR expression at various levels to avoid autoimmunity. We further present recently emerged tools to study plant autoimmunity and draw a cross-kingdom comparison to the role of NLRs in animal autoimmune conditions.


Asunto(s)
Autoinmunidad/genética , Membrana Celular/metabolismo , Espacio Intracelular/metabolismo , Proteínas NLR/metabolismo , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/genética , Proteínas Quinasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Fenotipo
19.
Phytopathology ; 112(4): 961-967, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34524883

RESUMEN

Powdery mildew fungi (Erysiphaceae) are widespread obligate biotrophic plant pathogens. Thus, applying genetic and omics approaches to study these fungi remains a major challenge, particularly for species with hemiendophytic mycelium. These belong to a distinct phylogenetic lineage within the family Erysiphaceae. To date, only a single draft genome assembly is available for this clade, obtained for Leveillula taurica. Here, we generated the first draft genome assemblies of Pleochaeta shiraiana and Phyllactinia moricola, two tree-parasitic powdery mildew species with hemiendophytic mycelium, representing two genera that have not yet been investigated with genomics tools. The Pleochaeta shiraiana assembly was 96,769,103 bp in length and consisted of 14,447 scaffolds, and the Phyllactinia moricola assembly was 180,382,532 bp in length on 45,569 scaffolds. Together with the draft genome of L. taurica, these resources will be pivotal for understanding the molecular basis of the lifestyle of these fungi, which is unique within the family Erysiphaceae.


Asunto(s)
Micelio , Enfermedades de las Plantas , Ascomicetos , Filogenia , Enfermedades de las Plantas/microbiología
20.
Environ Microbiol ; 23(10): 6292-6308, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34519166

RESUMEN

Powdery mildew is a foliar disease caused by epiphytically growing obligate biotrophic ascomycete fungi. How powdery mildew colonization affects host resident microbial communities locally and systemically remains poorly explored. We performed powdery mildew (Golovinomyces orontii) infection experiments with Arabidopsis thaliana grown in either natural soil or a gnotobiotic system and studied the influence of pathogen invasion into standing natural multi-kingdom or synthetic bacterial communities (SynComs). We found that after infection of soil-grown plants, G. orontii outcompeted numerous resident leaf-associated fungi while fungal community structure in roots remained unaltered. We further detected a significant shift in foliar but not root-associated bacterial communities in this setup. Pre-colonization of germ-free A. thaliana leaves with a bacterial leaf-derived SynCom, followed by G. orontii invasion, induced an overall similar shift in the foliar bacterial microbiota and minor changes in the root-associated bacterial assemblage. However, a standing root-derived SynCom in root samples remained robust against foliar infection with G. orontii. Although pathogen growth was unaffected by the leaf SynCom, fungal infection caused a twofold increase in leaf bacterial load. Our findings indicate that G. orontii infection affects mainly microbial communities in local plant tissue, possibly driven by pathogen-induced changes in source-sink relationships and host immune status.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Microbiota , Arabidopsis/microbiología , Enfermedades de las Plantas/microbiología , Hojas de la Planta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA