Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
2.
J Funct Biomater ; 8(4)2017 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-29035303

RESUMEN

Bicomponent electrospun nanofibers based on the combination of synthetic (i.e., aliphatic polyesters such as polycaprolactone (PCL)) and natural proteins (i.e., gelatin) have been extensively investigated as temporary platforms to instruct cells by the release of molecular/pharmaceutical signals for the regeneration of several tissues. Here, water soluble proteins (i.e., gelatin), strictly embedded to PCL, act as carriers of bioactive molecules, thus improving bioavailability and supporting cell activities during in vitro regeneration. However, these proteins are rapidly digested by enzymes, locally produced by many different cell types, both in vitro and in vivo, with significant drawbacks in the control of molecular release. Hence, we have investigated three post-processing strategies based on the use of different crosslinking agents-(1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride) (EDC), glyceraldehyde (GC), and 1,4-butanediol diglycidyl ether (BDDGE)-to delay the dissolution time of gelatin macromolecules from bicomponent fibers. All of the qualitative (i.e., SEM, TGA) and quantitative (i.e., Trinitrobenzene sulfonate (TNBS) and bicinchoninic acid (BCA) assays) morphological/chemical analyses as well as biocompatibility assays indicate that EDC crosslinking improves the chemical stability of bicomponent fibers at 37 °C and provides a more efficient encapsulation and controlled sustained release of drug, thus resulting in the best post-treatment to design bio-inspired fibrous platforms for the extended in vitro release of drugs.

3.
Langmuir ; 30(13): 3869-75, 2014 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-24650247

RESUMEN

Employing thermoresponsive hydrogels as scaffolding material for noble metal surface loading might be useful for the fabrication of surface-enhanced Raman scattering (SERS) surfaces. Here, we report on a new, reproducible, and simple approach to engineer poly(N-isopropylacrylamide) (PNIPAAm) hydrogel surfaces optimized for physisorption of gold nanoparticles (AuNPs). The advantage of this approach consists of the simple mechanism by which AuNPs are adsorbed on hydrogel templates, without sophisticated chemical treatments for their conjugation with the hydrogel. The resulting PNIPAAm-40 nm AuNP modes demonstrate that this approach gives the capability to tune the interparticle distance and, therefore, to control and modulate SERS affinity upon temperature changing.


Asunto(s)
Resinas Acrílicas/química , Oro/química , Nanopartículas del Metal/química , Adsorción , Hidrogeles , Nanopartículas del Metal/ultraestructura , Microscopía Electrónica de Transmisión , Tamaño de la Partícula , Espectrometría Raman , Propiedades de Superficie , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA