Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Analyst ; 144(23): 6936-6943, 2019 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-31617512

RESUMEN

MicroRNAs (miRNAs) are small non-coding RNA molecules that serve as important biomarkers for a variety of diseases such as cancer and vascular disease. However, sensitive and accurate detection of miR-21 is very challenging in that up-regulation of miR-21 is highly associated with several types of malignant tumors. Here, quartz crystal microbalance (QCM) biosensors were developed for sensitive and specific detection of miR-21 through formation of miR-21-DNA hybrid duplexes and non-specific intercalation of surface-modified pyrene molecules. High selectivity for miR-21 over other miRNAs came from the specific hybridization between miR-21 and gold nanoparticle (AuNP)-conjugated complementary oligonucleotides of miR-21. High sensitivity was obtained through formation of intercalated complexes on the surface with subsequent gold staining signal amplification. Under optimum condition using this strategic approach, our novel QCM biosensors could detect miR-21 concentration as low as 3.6 pM in the entire linear range from 2.5 pM to 2.5 µM with a correlation coefficient of 0.989. In addition, these sensors did not work at all for other miRNAs based on their high selectivity. miR-21 in human brain total RNA and total RNA extracted from A549 cell line could also be successfully detected. Therefore, miRNA detection technology using QCM biosensors and their detection mechanisms have potential as alternatives in biological studies and clinical diagnosis.


Asunto(s)
ADN/química , Sustancias Intercalantes/química , MicroARNs/análisis , Pirenos/química , Células A549 , Técnicas Biosensibles/métodos , Química Encefálica , ADN/genética , Oro/química , Humanos , Límite de Detección , Nanopartículas del Metal/química , MicroARNs/genética , Hibridación de Ácido Nucleico , Oligodesoxirribonucleótidos/química , Oligodesoxirribonucleótidos/genética , Tecnicas de Microbalanza del Cristal de Cuarzo/métodos
2.
Anal Sci ; 35(8): 883-888, 2019 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-31006718

RESUMEN

Here we present a quartz crystal microbalance (QCM) sensor for the highly selective and sensitive detection of Hg2+ ion, a toxic chemical species and a hazardous environmental contaminant. Hg2+ ion can be quantitatively measured based on changes in the resonance frequency of QCM following mass changes on the QCM sensor surface. The high selectivity for Hg2+ ion in this study can be obtained using a thymine-Hg2+-thymine pair, which is more stable than the adenine-thymine base pair in DNA. On the other hand, gold nanoparticles (AuNPs) and their size-enhancement techniques were used to amplify the QCM signals to increase the sensitivity for Hg2+ ion. With this strategic approach, the proposed QCM sensor can be used to quantitatively analyze Hg2+ ion with high selectivity and sensitivity. The detection limit was as low as 98.7 pM. The sensor failed to work with other metal ions at concentrations 1000-times higher than that of the Hg2+ ion. Finally, the recovery does not exceed 10% of the original value for the detection of Hg2+ ion in tap and bottled water. The results indicate acceptable accuracy and precision for practical applications.


Asunto(s)
Mercurio/análisis , Tecnicas de Microbalanza del Cristal de Cuarzo , Contaminantes Químicos del Agua/análisis , ADN/química , Oro/química , Iones/análisis , Nanopartículas del Metal/química , Tamaño de la Partícula , Tecnicas de Microbalanza del Cristal de Cuarzo/instrumentación , Propiedades de Superficie
3.
Anal Sci ; 35(5): 589-593, 2019 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-30662014

RESUMEN

We demonstrated a simple and rapid deacetylation reaction of p-nitrophenyl thioacetate by cyanide ion. This reaction is caused by the strong nucleophilic tendency of the cyanide ion to the electrophilic substrate and has been previously reported as the most common method for detecting cyanide ions. Tetrabutylammonium cyanide and sodium cyanide can be used as sources of cyanide ions for catalytic deacetylation reactions. Both catalysts showed almost the same catalytic reaction and the catalytic reaction was instantaneous at room temperature with a minimum concentration of cyanide ions of up to 1.0 µM. Cyanide did not catalyze the deacetylation reaction of p-nitropnenyl acetate due to a decrease in the nucleofugality of the leaving group and a decrease in the electrophilicity of carbonyl carbon in the substrate. However, the only disadvantage of this reaction system is the interference with other anions, such as acetate and azide, which also have nucleophilicity toward an electrophilic substrate. If these problems are improved, the system could be applied as a very efficient cyanide ion sensor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA