Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Ther Methods Clin Dev ; 26: 547-561, 2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36092363

RESUMEN

Huntington's disease (HD) is caused by an expanded CAG repeat in huntingtin (HTT). Since HD is dominant and loss of HTT leads to neurological abnormalities, safe therapeutic strategies require selective inactivation of mutant HTT. Previously, we proposed a concept of CRISPR-Cas9 using mutant-specific PAM sites generated by SNPs to selectively inactivate mutant HTT. Aiming at revealing suitable targets for clinical development, we analyzed the largest HD genotype dataset to identify target PAM-altering SNPs (PAS) and subsequently evaluated their allele specificities. The gRNAs based on the PAM sites generated by rs2857935, rs16843804, and rs16843836 showed high levels of allele specificity in patient-derived cells. Simultaneous use of two gRNAs based on rs2857935-rs16843804 or rs2857935-rs16843836 produced selective genomic deletions in mutant HTT and prevented the transcription of mutant HTT mRNA without impacting the expression of normal counterpart or re-integration of the excised fragment elsewhere in the genome. RNA-seq and off-target analysis confirmed high levels of allele specificity and the lack of recurrent off-targeting. Approximately 60% of HD subjects are eligible for mutant-specific CRISPR-Cas9 strategies of targeting one of these three PAS in conjunction with one non-allele-specific site, supporting high applicability of PAS-based allele-specific CRISPR approaches in the HD patient population.

2.
JCI Insight ; 7(19)2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36040815

RESUMEN

Dominant gain-of-function mechanisms in Huntington's disease (HD) suggest that selective silencing of mutant HTT produces robust therapeutic benefits. Here, capitalizing on exonic protospacer adjacent motif-altering (PAM-altering) SNP (PAS), we developed an allele-specific CRISPR/Cas9 strategy to permanently inactivate mutant HTT through nonsense-mediated decay (NMD). Comprehensive sequence/haplotype analysis identified SNP-generated NGG PAM sites on exons of common HTT haplotypes in HD subjects, revealing a clinically relevant PAS-based mutant-specific CRISPR/Cas9 strategy. Alternative allele of rs363099 (29th exon) eliminates the NGG PAM site on the most frequent normal HTT haplotype in HD, permitting mutant-specific CRISPR/Cas9 therapeutics in a predicted ~20% of HD subjects with European ancestry. Our rs363099-based CRISPR/Cas9 showed perfect allele specificity and good targeting efficiencies in patient-derived cells. Dramatically reduced mutant HTT mRNA and complete loss of mutant protein suggest that our allele-specific CRISPR/Cas9 strategy inactivates mutant HTT through NMD. In addition, GUIDE-Seq analysis and subsequent validation experiments support high levels of on-target gene specificity. Our data demonstrate a significant target population, complete mutant specificity, decent targeting efficiency in patient-derived cells, and minimal off-target effects on protein-coding genes, proving the concept of PAS-based allele-specific NMD-CRISPR/Cas9 and supporting its therapeutic potential in HD.


Asunto(s)
Enfermedad de Huntington , Alelos , Sistemas CRISPR-Cas , Mutación con Ganancia de Función , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/terapia , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , ARN Mensajero
3.
Mol Ther Methods Clin Dev ; 25: 84-95, 2022 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-35356757

RESUMEN

Huntington's disease (HD) is a dominantly inherited neurodegenerative disease caused by an expanded CAG repeat in huntingtin (HTT). Given an important role for HTT in development and significant neurodegeneration at the time of clinical manifestation in HD, early treatment of allele-specific drugs represents a promising strategy. The feasibility of an allele-specific antisense oligonucleotide (ASO) targeting single-nucleotide polymorphisms (SNPs) has been demonstrated in models of HD. Here, we constructed a map of haplotype-specific insertion-deletion variations (indels) to develop alternative mutant-HTT-specific strategies. We mapped indels annotated in the 1000 Genomes Project data on common HTT haplotypes, revealing candidate indels for mutant-specific HTT targeting. Subsequent sequencing of an HD family confirmed candidate sites and revealed additional allele-specific indels. Interestingly, the most common normal HTT haplotype carries indels of big allele length differences at many sites, further uncovering promising haplotype-specific targets. When patient-derived cells carrying the most common HTT diplotype were treated with ASOs targeting the mutant alleles of candidate indels (rs772629195 or rs72239206), complete mutant specificity was observed. In summary, our map of haplotype-specific indels permits the identification of allele-specific targets in HD subjects, potentially contributing to the development of safe HTT-lowering therapeutics that are suitable for early treatment in HD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA