RESUMEN
This study explores the relationship between landscape features and avian diversity in South Korea, examining both taxonomic and functional diversity. The Korean Peninsula serves as a pivotal habitat for resident bird species and a migratory pathway in the East Asia-Pacific flyway. Using a national dataset with block sizes ranging from 3.5 to 4.5 kilometers per side, we found that less urbanized open plains exhibit higher taxonomic diversity, while coastal regions with diverse water bird populations show higher functional diversity. These findings underscore the significance of conserving the existing land types and qualities in specific regions to substantially impact bird distribution and regional biodiversity. Remarkably, closed forests display diversity patterns akin to urban/built-up areas, despite their disparate land use characteristics. The stability of bird diversity indices across different land use types enables us to predict bird diversity indices based on the particular land use and land cover configurations. This study emphasizes the complementary nature of functional biodiversity indices in comprehending bird distribution patterns alongside taxonomic diversity indices.
Asunto(s)
Biodiversidad , Aves , Animales , República de Corea , Conservación de los Recursos Naturales , Ecosistema , BosquesRESUMEN
Bird assemblages are sensitive to changes in landscape composition and the environment, such as those that result from drought. In this study, the relationship between landscape composition and avian functional diversity in traditional agricultural ecosystems in the Civilian Control Zone (CCZ) of Korea was examined. In addition, the resilience of biodiversity to changes in landscape elements resulting from drought conditions was investigated. The traditional agricultural landscape (TAL) of the sites studied was divided into three types: TAL 1 had a high proportion of rice paddies, TAL 2 included large forest areas, and TAL 3 represented areas with drylands. Of these, TAL 1 showed the highest species richness and functional richness, but these measures were most vulnerable to drought. Meanwhile, TAL 2 showed that the bird communities were more tolerant under drought event. This study shows that to conserve and enhance the diversity of birds in traditional agricultural landscapes of Northeast Asia, active management of forest areas is needed to protect bird populations. In addition, commercial pressures to develop this area will require urgent biodiversity conservation plans to protect the unique biodiversity of the Korean CCZ. This study thus provides landscape management guidance for conservation planning.
RESUMEN
Despite the advances in restoration methods for newly created road habitats such as roadcuts and embankments, implementation in different parts of the world is limited by high cost and lack of knowledge of naturally formed plant communities. However, a cheaper alternative is to relay in natural successional process in sites under optimal conditions. Thus, the first steps should focus on identifying plant species that colonize roadways and road habitats as well as optimal colonization sites. Our study aimed to describe species composition, exotic species presence, and diversity among four roadways (Jeongok-Youngjung, JG; Seolma-Gueup, SM; Singal, SG; and Samga-Daechon, DC) and three habitat types (embankments, plain areas, and roadcuts) in South Korean peninsula. The effect of some environmental factors on plant composition was also examined (soil type, soil slope, and surrounding landscape). Our results showed that established plant species composition was influenced by the interaction between roadways and habitats types, which was also the main interaction affecting plant richness and evenness. Surprisingly, environmental variables had no effect on plant species composition, with a residual amount of explained variation. A total of 48 plant species were described as indicator of different roadways and habitat types, and 50% of them were invasive or cultivated species. It appeared that different regional-dependent processes, such as northern vs. southern roadways, interact with local process in new-road habitats, producing complex patterns of plant species colonization and composition. Thus, ecological restoration solutions should be targeted at site-specific needs (local) while taking into consideration the differences between northern and southern roadways (regional). Here, regional-pool and local-constraints interaction controls plant composition and diversity during road construction in South Korea. Finally, new restoration actions should be based on plant species that have been established spontaneously in these degraded areas.
Asunto(s)
Ecosistema , Plantas , Biodiversidad , República de Corea , SueloRESUMEN
Although warming and low dissolved oxygen (DO) levels are co-occurring significant climatic stressors in the ocean, the combined effects of these stressors on marine benthic animals have not been well established. Here, we tested the effects of elevated temperatures and low dissolved oxygen levels on the survival, emerging behavior from sediment, and the respiration of juvenile cosmopolitan Manila clams (Venerupis philippinarum) by exposing them to two temperatures (20 and 23.5°C) and DO levels (3.5 and 6-7 mg/L). Although within previously described tolerable ranges of temperature and DO, this 3.5°C increase in temperature combined with a 50% decrease in DO had a devastating effect on the survival of clams (85% mortality after 8 days). The mortality of clams under normoxia at 23.5°C appeared to be higher than under the low DO condition at 20°C. On the other hand, more clams emerged from sediment under the low DO condition at 20°C than under any other conditions. Oxygen consumption rates were not significantly affected by different conditions. Our results suggest temperature elevation combined with low oxygen additively increases stress on Manila clams and that warming is at least as stressful as low DO in terms of mortality. However, low DO poses another threat as it may induce emergence from sediment, and, thus increase predation risk. This is the first evidence that a combination of warming and deoxygenation stressors should reduce population survival of clams much more so than changes in a single stressor.