Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
J Magn Reson ; 363: 107702, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38788358

RESUMEN

Magnetic Resonance Imaging (MRI) often encounters image quality degradation due to magnetic field inhomogeneities. Conventional passive shimming techniques involve the manual placement of discrete magnetic materials, imposing limitations on correcting complex inhomogeneities. To overcome this, we propose a novel 3D printing method utilizing binder jetting technology to enable precise deposition of a continuous range of concentrations of ferromagnetic ink. This approach grants complete control of the magnitude of the magnetic moment within the passive shim enabling tailored corrections of B0 field inhomogeneities. By optimizing the magnetic field distribution using linear programming and an in-house written Computer-Aided Design (CAD) generation software, we printed shims with promising results in generating low spherical harmonic corrections. Experimental evaluations demonstrate feasibility of these 3D printed passive shims to induce target magnetic fields corresponding to second-order spherical harmonic, as evidenced by acquired B0 maps. The electrically insulating properties of the printed shims eliminate the risk of eddy currents and heating, thus ensuring safety. The dimensional fabrication accuracy of the printed shims surpasses previous methods, enabling more precise and localized correction of subject-specific inhomogeneities. The findings highlight the potential of binder-jetted 3D printed passive shims in MRI shimming as a versatile and efficient solution for fabricating passive shims, with the potential to enhance the quality of MRI imaging while also being applicable to other types of Magnetic Resonance systems.

2.
Adv Mater ; 33(25): e2008712, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33969565

RESUMEN

Rapid diagnostic testing at the site of the patient is essential when a fully equipped laboratory is not accessible. To maximize the impact of this approach, low-cost, disposable tests that require minimal user-interference and external equipment are desired. Fluid transport by capillary wicking removes the need for bulky ancillary equipment to actuate and control fluid flow. Nevertheless, current microfluidic paper-based analytical devices based on this principle struggle with the implementation of multistep diagnostic protocols because of fabrication-related issues. Here, 3D-printed microfluidic devices are demonstrated in a proof-of-concept enzyme-linked immunosorbent assay in which a multistep assay timeline is completed by precisely engineering capillary wetting within printed porous bodies. 3D printing provides a scalable route to low-cost microfluidic devices and obviates the assembly of discrete components. The resulting rapid and seamless transition between digital data and physical objects allows for rapid design iterations, and opens up perspectives on distributed manufacturing.


Asunto(s)
Dispositivos Laboratorio en un Chip , Impresión Tridimensional
3.
Lab Chip ; 20(16): 3060, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32720654

RESUMEN

Correction for '4D synchrotron microtomography and pore-network modelling for direct in situ capillary flow visualization in 3D printed microfluidic channels' by Agnese Piovesan et al., Lab Chip, 2020, 20, 2403-2411, DOI: .

4.
Lab Chip ; 20(13): 2403-2411, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32514512

RESUMEN

Powder-based 3D printing was employed to produce porous, capillarity-based devices suitable for passive microfluidics. Capillary imbibition in such devices was visualized in situ through dynamic synchrotron X-ray microtomography performed at the European Synchrotron Radiation Facility (ESRF) with sub-second time resolution. The obtained reconstructed images were segmented to observe imbibition dynamics, as well as to compute the system effective contact angle and to generate a pore-network to model capillary imbibition. A contact angle gradient was observed resulting in a preferential wicking direction, with the central portion of the microfluidic channel filling faster than the edge areas. The contact angle analysis and the pore-network model results suggest that this is due to spatial variations in the material surface properties arising from both the 3D printing and the subsequent drying processes.

5.
Adv Mater ; 30(22): e1800001, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29656459

RESUMEN

The advantageous physiochemical properties of poly(dimethylsiloxane) (PDMS) have made it an extremely useful material for prototyping in various technological, scientific, and clinical areas. However, PDMS molding is a manual procedure and requires tedious assembly steps, especially for 3D designs, thereby limiting its access and usability. On the other hand, automated digital manufacturing processes such as stereolithography (SL) enable true 3D design and fabrication. Here the formulation, characterization, and SL application of a 3D-printable PDMS resin (3DP-PDMS) based on commercially available PDMS-methacrylate macromers, a high-efficiency photoinitiator and a high-absorbance photosensitizer, is reported. Using a desktop SL-printer, optically transparent submillimeter structures and microfluidic channels are demonstrated. An optimized blend of PDMS-methacrylate macromers is also used to SL-print structures with mechanical properties similar to conventional thermally cured PDMS (Sylgard-184). Furthermore, it is shown that SL-printed 3DP-PDMS substrates can be rendered suitable for mammalian cell culture. The 3DP-PDMS resin enables assembly-free, automated, digital manufacturing of PDMS, which should facilitate the prototyping of devices for microfluidics, organ-on-chip platforms, soft robotics, flexible electronics, and sensors, among others.

6.
Chem Soc Rev ; 47(1): 209-230, 2018 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-29131228

RESUMEN

Computer-aided fabrication technologies combined with simulation and data processing approaches are changing our way of manufacturing and designing functional objects. Also in the field of catalytic technology and chemical engineering the impact of additive manufacturing, also referred to as 3D printing, is steadily increasing thanks to a rapidly decreasing equipment threshold. Although still in an early stage, the rapid and seamless transition between digital data and physical objects enabled by these fabrication tools will benefit both research and manufacture of reactors and structured catalysts. Additive manufacturing closes the gap between theory and experiment, by enabling accurate fabrication of geometries optimized through computational fluid dynamics and the experimental evaluation of their properties. This review highlights the research using 3D printing and computational modeling as digital tools for the design and fabrication of reactors and structured catalysts. The goal of this contribution is to stimulate interactions at the crossroads of chemistry and materials science on the one hand and digital fabrication and computational modeling on the other.

7.
Lab Chip ; 16(12): 2287-94, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27217203

RESUMEN

The vast majority of microfluidic systems are molded in poly(dimethylsiloxane) (PDMS) by soft lithography due to the favorable properties of PDMS: biocompatible, elastomeric, transparent, gas-permeable, inexpensive, and copyright-free. However, PDMS molding involves tedious manual labor, which makes PDMS devices prone to assembly failures and difficult to disseminate to research and clinical settings. Furthermore, the fabrication procedures limit the 3D complexity of the devices to layered designs. Stereolithography (SL), a form of 3D-printing, has recently attracted attention as a way to customize the fabrication of biomedical devices due to its automated, assembly-free 3D fabrication, rapidly decreasing costs, and fast-improving resolution and throughput. However, existing SL resins are not biocompatible and patterning transparent resins at high resolution remains difficult. Here we report procedures for the preparation and patterning of a transparent resin based on low-MW poly(ethylene glycol) diacrylate (MW 250) (PEG-DA-250). The 3D-printed devices are highly transparent and cells can be cultured on PEG-DA-250 prints for several days. This biocompatible SL resin and printing process solves some of the main drawbacks of 3D-printed microfluidic devices: biocompatibility and transparency. In addition, it should also enable the production of non-microfluidic biomedical devices.


Asunto(s)
Dispositivos Laboratorio en un Chip , Polietilenglicoles/química , Impresión Tridimensional , Animales , Células CHO , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Cricetulus , Hipocampo/citología , Ensayo de Materiales , Ratones , Neuronas/citología , Impresión Tridimensional/instrumentación , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA