Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Food Sci Technol ; 61(8): 1609-1619, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38966797

RESUMEN

The interest in algae-derived bioactive compounds has grown due to their potential therapeutic efficacy against a range of diseases. These compounds, derived from proteins, exhibit diverse functions and profound pharmacological effects. Recent research has highlighted the extensive health benefits of algae-derived bioactive compounds, positioning them as potential natural antioxidants in the food, pharmaceutical, and cosmetic industries. This study focuses on extracting proteins from Porphyra yezoensis using innovative physical pre-treatment methods such as stirring, ball milling, and homogenization, under various acidic and alkaline conditions. Enzymatic hydrolysis, employing commercial enzymes at optimal temperature, pH, and enzyme-substrate ratios, produced distinct fractions according to molecular weight. Pepsin demonstrated the highest hydrolysis rate, with the fraction above 10 kDa identified as the most bioactive hydrolysate. Antioxidant activity was evaluated through DPPH, ABTS, ferrous ion chelation, and reducing power assays, demonstrating high antioxidant potential and the ability to mitigate oxidative stress. The 10 kDa fraction of pepsin hydrolysate exhibited 82.6% DPPH activity, 77.5% ABTS activity, 88.4% ferrous ion chelation activity, and higher reducing power potential (0.84 absorbance at 700 nm). Further exploration of mechanisms, amino acid profiles, and potential in vivo benefits is essential to fully exploit the medicinal potential of these algae-derived hydrolysates.

2.
J Food Sci Technol ; 61(8): 1481-1491, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38966793

RESUMEN

Bioactive polysaccharides and oligosaccharides were successfully extracted from three distinct seaweeds: Sargassum sp., Graciallaria sp., and Ulva sp. utilizing various extraction techniques. The obtained polysaccharides and oligosaccharides were subjected to comprehensive characterization, and their potential antioxidant properties were assessed using a Hep G2 cell model. Analysis via FTIR spectroscopy unveiled the presence of sulfate groups in the polysaccharides and oligosaccharides derived from Sargassum sp. The antioxidant capabilities were assessed through various assays (DPPH, ABTS, Fe-ion chelation, and reducing power), revealing that SAR-OSC exhibited superior antioxidant activity than others. This was attributed to its higher phenolic content (24.6 µg/mg), FRAP value (36 µM Vitamin C/g of extract), and relatively low molecular weight (5.17 kDa). The study also investigated the protective effects of these polysaccharides and oligosaccharides against oxidative stress-induced damage in Hep G2 cells by measuring ROS production and intracellular antioxidant enzyme expressions (SOD, GPx, and CAT). Remarkably, SAR-OSC demonstrated the highest efficacy in protecting Hep G2 cells reducing ROS production and downregulating SOD, GPx, and CAT expressions. Current findings have confirmed that the oligosaccharides extracted by the chemical method show higher antioxidant activity, particularly SAR-OSC, and robust protective abilities in the Hep G2 cells.

3.
J Food Sci Technol ; 61(7): 1283-1294, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38910925

RESUMEN

In the current study, ten lactic acid bacteria (LAB) isolates exhibiting anti-α-glucosidase activity were isolated from fermented food. It is directed at novel supplementary diets to prevent/improve diet-induced carbohydrate metabolism disorders and related chronic diseases. Moreover, to evaluate their safety, functionality, and probiotic potential via in vitro simulated test conditions. From 16s-rRNA sequencing, Pediococcus acidilactici (NKUST 803, 845, 858), Lactobacillus plantarum (NKUST 817, 828, 851), Levilactobacillus brevis (NKUST 816, 855) and Lactobacillus acidophilus (NKUST 803, 863) were identified. The results showed that the isolates possessed anti-pathogenic activity, auto-aggregation ability, hydrophobicity (47.44-96.4%), and gastric acid-resistant activity (79-99.1%), which proved their potential for probiotics in nutraceuticals to render hypoglycemic activity or antidiabetic effects to the host positively. Among tested isolates, L. plantarum 817 and P. acidilactici 858 exhibited maximum α-glucosidase inhibitory (AGI) activity of 35-40%. The heat map clearly showed that L. plantarum 817 exhibited the best AGI activity and probiotic potential, among others. These were studied under various simulated gut conditions and safety tests. However, all isolates possess the potential to be used as probiotics in commercial-scale health applications. Pediococcus sp. possesses notable AGI activity but relatively less colonization potential in the gut hence recommended daily intake for positive health effects.

5.
J Oral Maxillofac Pathol ; 28(1): 70-76, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38800421

RESUMEN

Background: Glucose is the chief source of energy for cells, and glucose transporter 1 (GLUT-1) is one of the most common glucose transporters in humans. Tumour cells are known to express hypoxia-related protein, and these may allow tumour cells to survive under a sustained hypoxic environment. Surviving cells develop a more aggressive phenotype, which results in poor prognosis. Aims and Objectives: Expression and comparison of GLUT-1 in normal tissues, potentially malignant disorders (PMDs), and oral squamous cell carcinoma (OSCC) and comparison of expression in different grades of OSCC. Material and Methods: A total of 57 cases (10 normal, 17 PMD, and 30 cases of OSCC) were stained immuno-histochemically with GLUT-1. The expression was scored as 0, 1, 2, 3, and 4 for negative, mild, moderate, severe, and intense staining, respectively. Results: GLUT-1 expression was detected in all grades of OSCC. A significant correlation was found on comparing normal and OSCC, normal and PMDs, and PMD and OSCC. The expression of GLUT-1 was significant when compared with different histopathological grades of OSCC. Conclusions: Expression of GLUT-1 increased from normal to PMDs to increasing grades of OSCC and hence can be used as a prognostic predictive marker for OSCC.

6.
Trends Biotechnol ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38582658

RESUMEN

This review emphasizes the urgent need for food waste upcycling as a response to the mounting global food waste crisis. Focusing on polyhydroxyalkanoates (PHAs) as an alternative to traditional plastics, it examines the potential of various food wastes as feedstock for microbial fermentation and PHA production. The upcycling of food waste including cheese whey, waste cooking oil, coffee waste, and animal fat is an innovative practice for food waste management. This approach not only mitigates environmental impacts but also contributes to sustainable development and economic growth. Downstream processing techniques for PHAs are discussed, highlighting their role in obtaining high-quality materials. The study also addresses sustainability considerations, emphasizing biodegradability and recycling, while acknowledging the challenges associated with this path.

7.
Bioresour Technol ; 401: 130749, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38679239

RESUMEN

Microalgae are promising sources of valuable compounds: carotenoids, polyunsaturated fatty acids, lipids, etc. To overcome the feasibility challenge due to low yield and attain commercial potential, researchers merge technologies to enhance algal bioprocess. In this context, nanomaterials are attractive for enhancing microalgal bioprocessing, from cultivation to downstream extraction. Nanomaterials enhance biomass and product yields (mainly lipid and carotenoids) through improved nutrient uptake and stress tolerance during cultivation. They also provide mechanistic insights from recent studies. They also revolutionize harvesting via nano-induced sedimentation, flocculation, and flotation. Downstream processing benefits from nanomaterials, improving extraction and purification. Special attention is given to cost-effective extraction, showcasing nanomaterial integration, and providing a comparative account. The review also profiles nanomaterial types, including metallic nanoparticles, magnetic nanomaterials, carbon-based nanomaterials, silica nanoparticles, polymers, and functionalized nanomaterials. Challenges and future trends are discussed, emphasizing nanomaterials' role in advancing sustainable and efficient microalgal bioprocessing, unlocking their potential for bio-based industries.


Asunto(s)
Microalgas , Microalgas/metabolismo , Biomasa , Biotecnología/métodos , Nanoestructuras/química
8.
J Food Sci Technol ; 61(5): 847-860, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38487279

RESUMEN

Polyunsaturated fatty acids (PUFAs) found in microalgae, primarily omega-3 (ω-3) and omega-6 (ω-6) are essential nutrients with positive effects on diseases such as hyperlipidemia, atherosclerosis, and coronary risk. Researchers still seek improvement in PUFA yield at a large scale for better commercial prospects. This review summarizes advancements in microalgae PUFA research for their cost-effective production and potential applications. Moreover, it discusses the most promising cultivation modes using organic and inorganic sources. It also discusses biomass hydrolysates to increase PUFA production as an alternative and sustainable organic source. For cost-effective PUFA production, heterotrophic, mixotrophic, and photoheterotrophic cultivation modes are assessed with traditional photoautotrophic production modes. Also, mixotrophic cultivation has fascinating sustainable attributes over other trophic modes. Furthermore, it provides insight into growth phase (stage I) improvement strategies to accumulate biomass and the complementing effects of other stress-inducing strategies during the production phase (stage II) on PUFA enhancement under these cultivation modes. The role of an excessive or limiting range of salinity, nutrients, carbon source, and light intensity were the most effective parameter in stage II for accumulating higher PUFAs such as ω-3 and ω-6. This article outlines the commercial potential of microalgae for omega PUFA production. They reduce the risk of diabetes, cardiovascular diseases (CVDs), cancer, and hypertension and play an important role in their emerging role in healthy lifestyle management.

9.
Bioresour Technol ; 398: 130526, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38437967

RESUMEN

Globally, the demands for sustainably sourced functional foods like prebiotic oligosaccharides have been constantly increasing. This study assessed the potential of pineapple leaves (PL) as lignocellulosic feedstock for sustainable production of cellulose and hemicellulose-derived oligosaccharides through its hydrothermal pretreatment (HT) followed by controlled enzymatic hydrolysis. PL was subjected to HT at 160, 175, and 190 °C for 20, 30, 60, and 90 min without any catalyst for xylooligosaccharide (XOS) production, whereas, the resulting solid content after HT was subjected to controlled enzymatic hydrolysis by commercial cellulase using conduritol B epoxide (0.5-5 mM) for glucooligosaccharides (GOS) production. HT at 160 °C for 60 min resulted in maximum yield of XOS and GOS at 23.7 and 18.3 %, respectively, in the liquid phase. Controlled enzymatic hydrolysis of HT treated (160 °C) PL solids for 20 and 30 min yielded âˆ¼ 174 mg cellobiose/g dry biomass within 24 h, indicating overall high oligosaccharide production.


Asunto(s)
Ananas , Celulosa , Polisacáridos , Hidrólisis , Oligosacáridos , Glucuronatos
10.
Cureus ; 16(2): e54910, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38544590

RESUMEN

Meningitis-retention syndrome (MRS) is a recently recognized condition marked by the concurrent occurrence of aseptic meningitis with acute urinary retention. We present the case of a 22-year-old man who presented with an undiagnosed fever with headache and urinary retention. Subsequent urodynamic testing revealed an underactive detrusor, resulting in insufficient contraction of the bladder during voiding despite normal sensation during bladder filling. Normal urinary voiding was successfully restored without the need for treatment within a 30-day timeframe. It is crucial to include MRS in the differential diagnosis of acute urinary retention. It is crucial to include MRS in the differential diagnosis of acute urinary retention. Despite the generally benign and self-remitting nature of MRS, the management of acute urinary retention is necessary.

11.
J Food Sci Technol ; 61(4): 631-641, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38410271

RESUMEN

Prolonged and excessive use of chlorpyrifos (CPS) has caused severe pollution, particularly in crops, vegetables, fruits, and water sources. As a result, CPS is detected in various food and water samples using conventional methods. However, its applications are limited due to size, portability, cost, etc. In this regard, electrochemical sensors are preferred for CPS detection due to their high sensitivity, reliability, rapid, on-site detection, and user-friendly. Notably, graphene-based electrochemical sensors have gained more attention due to their unique physiochemical and electrochemical properties. It shows high sensitivity, selectivity, and quick response because of its high surface area and high conductivity. In this review, we have discussed an overview of three graphene-based different functional electrochemical sensors such as electroanalytical sensors, bio-electrochemical sensors, and photoelectrochemical sensors used to detect CPS in food and water samples. Furthermore, the fabrication and operation of these electrochemical sensors using various materials (low band gap material, nanomaterials, enzymes, antibodies, DNA, aptamers, and so on) and electrochemical techniques (CV, DPV, EIS, SWV etc.) are discussed. The study found that the electrical signal was reduced with increasing CPS concentration. This is due to the blocking of active sites, reduced redox reaction, impedance, irreversible reactions, etc. In addition, acetylcholinesterase-coupled sensors are more sensitive and stable than others. Also, it can be further improved by fabricating with low band gap nanomaterials. Despite their advantages, these sensors have significant drawbacks, such as low reusability, repeatability, stability, and high cost. Therefore, further research is required to overcome such limitations.

12.
Crit Rev Biotechnol ; : 1-19, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38163946

RESUMEN

Spent grains are one of the lignocellulosic biomasses available in abundance, discarded by breweries as waste. The brewing process generates around 25-30% of waste in different forms and spent grains alone account for 80-85% of that waste, resulting in a significant global waste volume. Despite containing essential nutrients, i.e., carbohydrates, fibers, proteins, fatty acids, lipids, minerals, and vitamins, efficient and economically viable valorization of these grains is lacking. Microbial fermentation enables the valorization of spent grain biomass into numerous commercially valuable products used in energy, food, healthcare, and biomaterials. However, the process still needs more investigation to overcome challenges, such as transportation, cost-effective pretreatment, and fermentation strategy. to lower the product cost and to achieve market feasibility and customer affordability. This review summarizes the potential of spent grains valorization via microbial fermentation and associated challenges.

13.
Br J Anaesth ; 132(4): 639-643, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38290906

RESUMEN

Type 2 diabetes mellitus is an increasingly common long-term condition, and suboptimal perioperative glycaemic control can lead to postoperative harms. The advent of new antidiabetic drugs, in particular glucagon-like peptide-1 (GLP-1) receptor agonists and sodium-glucose cotransporter 2 (SGLT2) inhibitors, has enabled perioperative continuation of these medicines, thus avoiding the harms of variable rate i.v. insulin infusions whilst providing glycaemic control. There are differences between medicines regulatory agencies and organisations on how these classes that are most often used to treat diabetes mellitus, (but also in the case of SGLT2 inhibitors chronic kidney disease and heart failure in those without diabetes) should be managed in the perioperative period. In this commentary, we argue that GLP-1 receptor agonists should continue during the perioperative period and that SGLT2 inhibitors should only be omitted the day prior to a planned procedure . The reasons for the differing advice advocated between regulatory agencies and what anaesthetic practitioners should do in the face of continuing uncertainty are discussed.


Asunto(s)
Diabetes Mellitus Tipo 2 , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Agonistas Receptor de Péptidos Similares al Glucagón , Hipoglucemiantes/uso terapéutico , Glucosa , Sodio
14.
Crit Rev Biotechnol ; 44(2): 255-274, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36658718

RESUMEN

As the demand for tea (Camellia sinensis) has grown across the world, the amount of biomass waste that has been produced during the harvesting process has also increased. Tea consumption was estimated at about 6.3 million tonnes in 2020 and is anticipated to reach 7.4 million tonnes by 2025. The generation of tea waste (TW) after use has also increased concurrently with rising tea consumption. TW includes clipped stems, wasted tea leaves, and buds. Many TW-derived products have proven benefits in various applications, including energy generation, energy storage, wastewater treatment, and pharmaceuticals. TW is widely used in environmental and energy-related applications. Energy recovery from low- and medium-calorific value fuels may be accomplished in a highly efficient manner using pyrolysis, anaerobic digestion, and gasification. TW-made biochar and activated carbon are also promising adsorbents for use in environmental applications. Another area where TW shows promise is in the synthesis of phytochemicals. This review offers an overview of the conversion procedures for TW into value-added products. Further, the improvements in their applications for energy generation, energy storage, removal of different contaminants, and extraction of phytochemicals have been reviewed. A comprehensive assessment of the sustainable use of TWs as environmentally acceptable renewable resources is compiled in this review.


Asunto(s)
, Residuos
15.
Chemosphere ; 346: 140661, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37951399

RESUMEN

Microplastics (MPs) are plastic particles in a size ranging from 1 mm to 5 mm in diameter, and are formed by the breakdown of plastics from different sources. They are emerging environmental pollutants, and pose a great threat to living organisms. Improper disposal, inadequate recycling, and excessive use of plastic led to the accumulation of MP in the environment. The degradation of MP can be done either biotically or abiotically. In view of that, this article discusses the molecular mechanisms that involve bacteria, fungi, and enzymes to degrade the MP polymers as the primary objective. As per as abiotic degradation is concerned, two different modes of MP degradation were discussed in order to justify the effectiveness of biotic degradation. Finally, this review is concluded with the challenges and future perspectives of MP biodegradation based on the existing research gaps. The main objective of this article is to provide the readers with clear insight, and ideas about the recent advancements in MP biodegradation.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Microplásticos , Plásticos , Polímeros , Biodegradación Ambiental
16.
Bioresour Technol ; 394: 130252, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38145766

RESUMEN

The escalating demand for long-chain polyunsaturated fatty acids (PUFAs) due to their vital health effects has deepened the exploration of sustainable sources. Thraustochytrium sp. stands out as a promising platform for omega-3 and 6 PUFA production. This research strategically optimizes key parameters: temperature, salinity, pH, and G:Y:P ratio and the optimized conditions for maximum biomass, total lipid, and DHA enhancement were 28 °C, 50 %, 6, and 10:1:2 respectively. Process optimization enhanced 32.30 and 31.92 % biomass (9.88 g/L) and lipid (6.57 g/L) yield. Notably, DHA concentration experienced a substantial rise of 69.91 % (1.63 g/L), accompanied by notable increases in EPA and DPA by 82.69 % and 31.47 %, respectively. MANOVA analysis underscored the statistical significance of the optimization process (p < 0.01), with all environmental factors significantly influencing biomass and lipid data (p < 0.05), particularly impacting DHA production. Thraustochytrium sp. can be a potential source of commercial DHA production with the fine-tuning of these key process parameters.


Asunto(s)
Ácidos Grasos Omega-3 , Estramenopilos , Biomasa , Ácidos Grasos Insaturados , Ácidos Docosahexaenoicos , Ácido Eicosapentaenoico , Ácidos Grasos
17.
J Food Sci Technol ; 60(12): 2955-2967, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37786601

RESUMEN

Heterotrophic fast-growing thraustochytrids have been identified as promising candidates for the bioconversion of organic sources into industrially important valuable products. Marine thraustochytrids exhibit remarkable potential for high-value polyunsaturated fatty acids (PUFAs) production however their potential is recently discovered for high-value carotenoids and terpenoids which also have a role as a dietary supplement and health promotion. Primarily, omega-3 and 6 PUFAs (DHA, EPA, and ARA) from thraustochytrids are emerging sources of nutrient supplements for vegetarians replacing animal sources and active pharmaceutical ingredients due to excellent bioactivities. Additionally, thraustochytrids produce reasonable amounts of squalene (terpenoid) and carotenoids which are also high-value products with great market potential. Hence, these can be coextracted as a byproduct with PUFAs under the biorefinery concept. There is still quite a few printed information on bioprocess conditions for decent (co)-production of squalene and carotenoid from selective protists such as lutein, astaxanthin, canthaxanthin, and lycopene. The current review seeks to provide a concise overview of the coproduction and application of PUFAs, carotenoids, and terpenoids from oleaginous thraustochytrids and their application to human health.

18.
Bioresour Technol ; 389: 129801, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37813315

RESUMEN

This study addresses the pressing need for sustainable bioremediation solutions to combat increasing pollution challenges in alignment with sustainability development goals. The research focuses on developing a co-culture approach involving microalgae and Komagataeibacter europaeus BCRC 14148 bacterium to create a biocomposite for efficient ammonia removal. Nanocellulose, produced by the bacterium, serves as a substrate for microalgae attachment. Optimization using specific growth media ratios resulted in biocomposite yields of 4.05 ± 0.16 g/L and 3.83 ± 0.13 g/L in HS medium with fructose and glucose, respectively. The optimal conditions include a 40:60 ratio of HS-F to TAP medium, 25 ℃ incubation, 6000 Lux light intensity, pH 5.5, and a 48-hour incubation period. When applied to wastewater treatment, the biocomposite demonstrated exceptional ammonium removal efficiency at 91.64 ± 1.27 %. This co-culture-derived biocomposite offers an eco-friendly, recyclable, and effective solution for sustainable environmental bioremediation.


Asunto(s)
Celulosa , Microalgas , Aguas Residuales , Amoníaco , Técnicas de Cocultivo , Biomasa
19.
Bioresour Technol ; 389: 129808, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37806362

RESUMEN

Lutein, a bioactive xanthophyll, has recently attracted significant attention for numerous health benefits, e.g., protection of eye health, macular degeneration, and acute and chronic syndromes etc. Microalgae have emerged as the best platform for high-value lutein production with high productivity, lutein content, and scale-up potential. Algal lutein possesses numerous bioactivities, hence widely used in pharmaceuticals, nutraceuticals, aquaculture, cosmetics, etc. This review highlights advances in upstream lutein production enhancement and feasible downstream extraction and cell disruption techniques for a large-scale lutein biorefinery. Besides bioprocess-related advances, possible solutions for existing production challenges in microalgae-based lutein biorefinery, market potential, and emerging commercial scopes of lutein and its potential health applications are also discussed. The key enzymes involved in the lutein biosynthesizing Methyl-Erythritol-phosphate (MEP) pathway have been briefly described. This review provides a comprehensive updates on lutein research advancements covering scalable upstream and downstream production strategies and potential applications for researchers and industrialists.


Asunto(s)
Luteína , Microalgas , Microalgas/metabolismo , Biomasa , Suplementos Dietéticos , Fosfatos/metabolismo
20.
Bioengineered ; 14(1): 2252659, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37726874

RESUMEN

Brown seaweeds are a promising source of bioactive substances, particularly oligosaccharides. This group has recently gained considerable attention due to its diverse cell wall composition, structure, and wide-spectrum bioactivities. This review article provides a comprehensive update on advances in oligosaccharides (OSs) production from brown seaweeds and their potential health applications. It focuses on advances in feedstock pretreatment, extraction, characterization, and purification prior to OS use for potential health applications. Brown seaweed oligosaccharides (BSOSs) are extracted using various methods. Among these, enzymatic hydrolysis is the most preferred, with high specificity, mild reaction conditions, and low energy consumption. However, the enzyme selection and hydrolysis conditions need to be optimized for desirable yield and oligosaccharides composition. Characterization of oligosaccharides is essential to determine their structure and properties related to bioactivities and to predict their most suitable application. This is well covered in this review. Analytical techniques such as high-performance liquid chromatography (HPLC), gas chromatography (GC), and nuclear magnetic resonance (NMR) spectroscopy are commonly applied to analyze oligosaccharides. BSOSs exhibit a range of biological properties, mainly antimicrobial, anti-inflammatory, and prebiotic properties among others. Importantly, BSOSs have been linked to possible health advantages, including metabolic syndrome management. Metabolic syndrome is a cluster of conditions, such as obesity, hypertension, and dyslipidemia, which increase the risk of cardiovascular disease and type 2 diabetes. Furthermore, oligosaccharides have potential applications in the food and pharmaceutical industries. Future research should focus on improving industrial-scale oligosaccharide extraction and purification, as well as researching their potential utility in the treatment of various health disorders.[Figure: see text].


Brown algae exhibit a great diversity to offer a wide range of OSs bioactivities.Non-enzymatic extraction yields 30-58% OSs more than enzymatic routes.Enzymatically derived OSs exhibit better bioactivity than non-enzymatic OSs.Nanofiltration/activated carbon can solve bottlenecks in large-scale purification.OSs health applications are proven at in vitro stage, clinical studies yet to be done.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Síndrome Metabólico , Humanos , Pared Celular , Cromatografía Líquida de Alta Presión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA