Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Neurochem Int ; 171: 105629, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37865339

RESUMEN

Phenylketonuria (PKU) is an autosomal recessive metabolic disorder caused by mutations in the phenylalanine hydroxylase (PAH) gene, resulting in phenylalanine accumulation and impaired tyrosine production. In Tyrosinemia type 1 (TYRSN1) mutations affect fumarylacetoacetate hydrolase, leading to accumulation of toxic intermediates of tyrosine catabolism. Treatment of TYRSN1 with nitisinone results in extreme tissue levels of tyrosine. Although PKU and TYRSN1 have opposite effects on tyrosine levels, both conditions have been associated with neuro-psychiatric symptoms typically present in ADHD, possibly indicating an impaired dopamine (DA) synthesis. However, concrete in vivo data on the possible molecular basis for disrupted DA production under disease mimicking conditions have been lacking. In pursuit to uncover associated molecular mechanisms, we exposed an established, DA producing cell line (PC12) to different concentrations of phenylalanine and tyrosine in culture media. We measured the effects on viability, proteomic composition, tyrosine, DA and tyrosine hydroxylase (TH) levels and TH phosphorylation. TH catalyzes the rate-limiting step in DA synthesis. High extracellular levels of phenylalanine depleted cells of intracellular tyrosine and DA. Compared to physiological levels (75 µM), either low (35 µM) or high concentrations of tyrosine (275 or 835 µM) decreased cellular DA, TH protein, and its phosphorylation levels. Using deep proteomic analysis, we identified multiple proteins, biological processes and pathways that were altered, including enzymes and transporters involved in amino acid metabolism. Using this information and published data, we developed a mathematical model to predict how extracellular levels of aromatic amino acids can affect the cellular synthesis of DA via different mechanisms. Together, these data provide new information about the normal regulation of neurotransmitter synthesis and how this may be altered in neurometabolic disorders, such as PKU and TYRSN1, with implications for the treatment of cognitive symptoms resulting from comorbid neurodevelopmental disorders.


Asunto(s)
Trastornos del Neurodesarrollo , Fenilcetonurias , Tirosinemias , Ratas , Animales , Dopamina/metabolismo , Tirosina/metabolismo , Fenilalanina , Células PC12 , Proteómica , Fenilcetonurias/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
2.
Front Cell Dev Biol ; 11: 1161588, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37397259

RESUMEN

Introduction: The regulation of intracellular functions in mammalian cells involves close coordination of cellular processes. During recent years it has become evident that the sorting, trafficking and distribution of transport vesicles and mRNA granules/complexes are closely coordinated to ensure effective simultaneous handling of all components required for a specific function, thereby minimizing the use of cellular energy. Identification of proteins acting at the crossroads of such coordinated transport events will ultimately provide mechanistic details of the processes. Annexins are multifunctional proteins involved in a variety of cellular processes associated with Ca2+-regulation and lipid binding, linked to the operation of both the endocytic and exocytic pathways. Furthermore, certain Annexins have been implicated in the regulation of mRNA transport and translation. Since Annexin A2 binds specific mRNAs via its core structure and is also present in mRNP complexes, we speculated whether direct association with RNA could be a common property of the mammalian Annexin family sharing a highly similar core structure. Methods and results: Therefore, we performed spot blot and UV-crosslinking experiments to assess the mRNA binding abilities of the different Annexins, using annexin A2 and c-myc 3'UTRs as well as c-myc 5'UTR as baits. We supplemented the data with immunoblot detection of selected Annexins in mRNP complexes derived from the neuroendocrine rat PC12 cells. Furthermore, biolayer interferometry was used to determine the KD of selected Annexin-RNA interactions, which indicated distinct affinities. Amongst these Annexins, Annexin A13 and the core structures of Annexin A7, Annexin A11 bind c-myc 3'UTR with KDs in the nanomolar range. Of the selected Annexins, only Annexin A2 binds the c-myc 5'UTR indicating some selectivity. Discussion: The oldest members of the mammalian Annexin family share the ability to associate with RNA, suggesting that RNA-binding is an ancient trait of this protein family. Thus, the combined RNA- and lipid-binding properties of the Annexins make them attractive candidates to participate in coordinated long-distance transport of membrane vesicles and mRNAs regulated by Ca2+. The present screening results can thus pave the way for studies of the multifunctional Annexins in a novel cellular context.

3.
iScience ; 26(5): 106649, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37250335

RESUMEN

The mRNA cap-binding protein, eukaryotic initiation factor 4E (eIF4E), is crucial for translation and regulated by Ser209 phosphorylation. However, the biochemical and physiological role of eIF4E phosphorylation in translational control of long-term synaptic plasticity is unknown. We demonstrate that phospho-ablated Eif4eS209A Knockin mice are profoundly impaired in dentate gyrus LTP maintenance in vivo, whereas basal perforant path-evoked transmission and LTP induction are intact. mRNA cap-pulldown assays show that phosphorylation is required for synaptic activity-induced removal of translational repressors from eIF4E, allowing initiation complex formation. Using ribosome profiling, we identified selective, phospho-eIF4E-dependent translation of the Wnt signaling pathway in LTP. Surprisingly, the canonical Wnt effector, ß-catenin, was massively recruited to the eIF4E cap complex following LTP induction in wild-type, but not Eif4eS209A, mice. These results demonstrate a critical role for activity-evoked eIF4E phosphorylation in dentate gyrus LTP maintenance, remodeling of the mRNA cap-binding complex, and specific translation of the Wnt pathway.

4.
Front Cell Dev Biol ; 11: 1094941, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37250892

RESUMEN

Introduction: Annexin A2 (AnxA2) plays a critical role in cell transformation, immune response, and resistance to cancer therapy. Besides functioning as a calcium- and lipidbinding protein, AnxA2 also acts as an mRNA-binding protein, for instance, by interacting with regulatory regions of specific cytoskeleton-associated mRNAs. Methods and Results: Nanomolar concentrations of FL3, an inhibitor of the translation factor eIF4A, transiently increases the expression of AnxA2 in PC12 cells and stimulates shortterm transcription/translation of anxA2 mRNA in the rabbit reticulocyte lysate. AnxA2 regulates the translation of its cognate mRNA by a feed-back mechanism, which can partly be relieved by FL3. Results obtained using the holdup chromatographic retention assay results suggest that AnxA2 interacts transiently with eIF4E (possibly eIF4G) and PABP in an RNA-independent manner while cap pulldown experiments indicate a more stable RNA-dependent interaction. Short-term (2 h) treatment of PC12 cells with FL3 increases the amount of eIF4A in cap pulldown complexes of total lysates, but not of the cytoskeletal fraction. AnxA2 is only present in cap analogue-purified initiation complexes from the cytoskeletal fraction and not total lysates confirming that AnxA2 binds to a specific subpopulation of mRNAs. Discussion: Thus, AnxA2 interacts with PABP1 and subunits of the initiation complex eIF4F, explaining its inhibitory effect on translation by preventing the formation of the full eIF4F complex. This interaction appears to be modulated by FL3. These novel findings shed light on the regulation of translation by AnxA2 and contribute to a better understanding of the mechanism of action of eIF4A inhibitors.

5.
RNA Biol ; 18(sup1): 337-354, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34346292

RESUMEN

The expression and localization of the oncoprotein c-Myc is highly regulated at the level of transcription, mRNA transport, translation, as well as stability of the protein. We previously showed that Annexin A2 (AnxA2) binds to a specific localization element in the 3'untranslated region (UTR) of c-myc mRNA and is involved in its localization to the perinuclear region. In the present study, we demonstrate that AnxA2 binds in a Ca2+-dependent manner to the internal ribosomal entry site (IRES) containing two pseudo-knots in the 5´UTR of the c-myc mRNA. Here, we employ an in vitro rabbit reticulocyte lysate system with chimeric c-myc reporter mRNAs to demonstrate that binding of AnxA2 to the c-myc IRES modulates the expression of c-Myc. Notably, we show that low levels of AnxA2 appear to increase, while high levels of AnxA2 inhibits translation of the chimeric mRNA. However, when both the AnxA2-binding site and the ribosomal docking site in the c-myc IRES are deleted, AnxA2 has no effect on the translation of the reporter mRNA. Forskolin-treatment of PC12 cells results in upregulation of Ser25 phosphorylated AnxA2 expression while c-Myc expression is down-regulated. The effect of forskolin on c-Myc expression and the level of Ser25 phosphorylated AnxA2 was abolished in the presence of EGTA. These findings indicate that AnxA2 regulates both the transport and subsequent translation of the c-myc mRNA, possibly by silencing the mRNA during its transport. They also suggest that AnxA2 act as a switch to turn off the c-myc IRES activity in the presence of calcium.Abbreviations: AnxA2, Annexin A2; ß2--µglob, ß2-microglobulin; cpm, counts per minute; hnRNP, heterogenous nuclear ribonucleoprotein; IRES, internal ribosomal entry site; ITAF, IRES trans-acting factor; MM, multiple myeloma; PABP, poly(A)-binding protein; PCBP, poly(rC) binding protein; PSF, PTB-associated splicing factor; PTB, polypyrimidine tract binding protein; RRL, rabbit reticulocyte lysate; UTR, untranslated region; YB, Y-box binding protein.


Asunto(s)
Regiones no Traducidas 5'/genética , Anexina A2/metabolismo , Sitios Internos de Entrada al Ribosoma , Biosíntesis de Proteínas , Proteínas Proto-Oncogénicas c-myc/genética , ARN Mensajero/genética , Anexina A2/genética , Sitios de Unión , Humanos , Unión Proteica , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Mensajero/metabolismo
6.
Mol Pharmacol ; 100(2): 155-169, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34031189

RESUMEN

The 14-3-3 proteins constitute a family of adaptor proteins with many binding partners and biological functions, and they are considered promising drug targets in cancer and neuropsychiatry. By screening 1280 small-molecule drugs using differential scanning fluorimetry (DSF), we found 15 compounds that decreased the thermal stability of 14-3-3ζ Among these compounds, ebselen was identified as a covalent, destabilizing ligand of 14-3-3 isoforms ζ, ε, γ, and η Ebselen bonding decreased 14-3-3ζ binding to its partner Ser19-phosphorylated tyrosine hydroxylase. Characterization of site-directed mutants at cysteine residues in 14-3-3ζ (C25, C94, and C189) by DSF and mass spectroscopy revealed covalent modification by ebselen of all cysteines through a selenylsulfide bond. C25 appeared to be the preferential site of ebselen interaction in vitro, whereas modification of C94 was the main determinant for protein destabilization. At therapeutically relevant concentrations, ebselen and ebselen oxide caused decreased 14-3-3 levels in SH-SY5Y cells, accompanied with an increased degradation, most probably by the ubiquitin-dependent proteasome pathway. Moreover, ebselen-treated zebrafish displayed decreased brain 14-3-3 content, a freezing phenotype, and reduced mobility, resembling the effects of lithium, consistent with its proposed action as a safer lithium-mimetic drug. Ebselen has recently emerged as a promising drug candidate in several medical areas, such as cancer, neuropsychiatric disorders, and infectious diseases, including coronavirus disease 2019. Its pleiotropic actions are attributed to antioxidant effects and formation of selenosulfides with critical cysteine residues in proteins. Our work indicates that a destabilization of 14-3-3 may affect the protein interaction networks of this protein family, contributing to the therapeutic potential of ebselen. SIGNIFICANCE STATEMENT: There is currently great interest in the repurposing of established drugs for new indications and therapeutic targets. This study shows that ebselen, which is a promising drug candidate against cancer, bipolar disorder, and the viral infection coronavirus disease 2019, covalently bonds to cysteine residues in 14-3-3 adaptor proteins, triggering destabilization and increased degradation in cells and intact brain tissue when used in therapeutic concentrations, potentially explaining the behavioral, anti-inflammatory, and antineoplastic effects of this drug.


Asunto(s)
Proteínas 14-3-3/química , Proteínas 14-3-3/metabolismo , Cisteína/genética , Isoindoles/farmacología , Compuestos de Organoselenio/farmacología , Proteínas 14-3-3/genética , Animales , Sitios de Unión/efectos de los fármacos , Encéfalo/metabolismo , Línea Celular , Dicroismo Circular , Regulación hacia Abajo , Femenino , Humanos , Masculino , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Unión Proteica/efectos de los fármacos , Conformación Proteica , Estabilidad Proteica/efectos de los fármacos , Tirosina 3-Monooxigenasa/metabolismo , Pez Cebra , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/metabolismo
7.
Cell ; 184(5): 1299-1313.e19, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33606976

RESUMEN

It is unclear how binding of antidepressant drugs to their targets gives rise to the clinical antidepressant effect. We discovered that the transmembrane domain of tyrosine kinase receptor 2 (TRKB), the brain-derived neurotrophic factor (BDNF) receptor that promotes neuronal plasticity and antidepressant responses, has a cholesterol-sensing function that mediates synaptic effects of cholesterol. We then found that both typical and fast-acting antidepressants directly bind to TRKB, thereby facilitating synaptic localization of TRKB and its activation by BDNF. Extensive computational approaches including atomistic molecular dynamics simulations revealed a binding site at the transmembrane region of TRKB dimers. Mutation of the TRKB antidepressant-binding motif impaired cellular, behavioral, and plasticity-promoting responses to antidepressants in vitro and in vivo. We suggest that binding to TRKB and allosteric facilitation of BDNF signaling is the common mechanism for antidepressant action, which may explain why typical antidepressants act slowly and how molecular effects of antidepressants are translated into clinical mood recovery.


Asunto(s)
Antidepresivos/farmacología , Receptor trkB/metabolismo , Animales , Antidepresivos/química , Antidepresivos/metabolismo , Sitios de Unión , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Línea Celular , Colesterol/metabolismo , Embrión de Mamíferos , Fluoxetina/química , Fluoxetina/metabolismo , Fluoxetina/farmacología , Hipocampo/metabolismo , Humanos , Ratones , Modelos Animales , Simulación de Dinámica Molecular , Dominios Proteicos , Ratas , Receptor trkB/química , Corteza Visual/metabolismo
8.
Sci Rep ; 10(1): 13141, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32753733

RESUMEN

Many occupations require operations during the night-time when the internal circadian clock promotes sleep, in many cases resulting in impairments in cognitive performance and brain functioning. Here, we use a rat model to attempt to identify the biological mechanisms underlying such impaired performance. Rats were exposed to forced activity, either in their rest-phase (simulating night-shift work; rest work) or in their active-phase (simulating day-shift work; active work). Sleep, wakefulness and body temperature rhythm were monitored throughout. Following three work shifts, spatial memory performance was tested on the Morris Water Maze task. After 4 weeks washout, the work protocol was repeated, and blood and brain tissue collected. Simulated night-shift work impaired spatial memory and altered biochemical markers of cerebral cortical protein synthesis. Measures of daily rhythm strength were blunted, and sleep drive increased. Individual variation in the data suggested differences in shift work tolerance. Hierarchical regression analyses revealed that type of work, changes in daily rhythmicity and changes in sleep drive predict spatial memory performance and expression of brain protein synthesis regulators. Moreover, serum corticosterone levels predicted expression of brain protein synthesis regulators. These findings open new research avenues into the biological mechanisms that underlie individual variation in shift work tolerance.


Asunto(s)
Ritmo Circadiano , Cognición , Glucocorticoides/sangre , Plasticidad Neuronal , Horario de Trabajo por Turnos , Sueño , Memoria Espacial , Animales , Masculino , Ratas , Ratas Sprague-Dawley
9.
Curr Biol ; 30(18): 3507-3521.e7, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32707059

RESUMEN

Levels of adult neurogenesis in the dentate gyrus (DG) of the hippocampus are correlated with unique cognitive functions. However, the molecular pathways controlling it are poorly understood. Here, we found that the known physiological ways to enhance neurogenesis converged on the eEF2/eEF2K pathway via AMPK in the DG. Enhancing the elongation phase of mRNA translation in eEF2K-knockout (eEF2K-KO) mice induced the expression of neurogenesis-related proteins in the hippocampus. We thus tested the hypothesis that inducing eEF2K-KO in mature neurons of the DG controls neurogenesis. Indeed, both general eEF2K-KO and targeted KO in DG excitatory mature neurons resulted in enhanced neurogenesis levels and upregulation of neurogenesis-related proteins. Increased neurogenesis was correlated with enhanced performance in DG-dependent learning. Moreover, general and local eEF2K-KO in old mice rejuvenated the DG, paving the way for better mechanistic understanding of how neurogenesis is controlled in the mature DG and possible treatments for incurable aging-associated diseases.


Asunto(s)
Cognición/fisiología , Giro Dentado/metabolismo , Quinasa del Factor 2 de Elongación/fisiología , Hipocampo/metabolismo , Neurogénesis , Neuronas/citología , Animales , Masculino , Ratones , Ratones Noqueados , Neuronas/metabolismo , Fosforilación , Transducción de Señal
10.
Biomolecules ; 10(4)2020 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-32344647

RESUMEN

The functions of the annexin family of proteins involve binding to Ca2+, lipid membranes, other proteins, and RNA, and the annexins share a common folded core structure at the C terminus. Annexin A11 (AnxA11) has a long N-terminal region, which is predicted to be disordered, binds RNA, and forms membraneless organelles involved in neuronal transport. Mutations in AnxA11 have been linked to amyotrophic lateral sclerosis (ALS). We studied the structure and stability of AnxA11 and identified a short stabilising segment in the N-terminal end of the folded core, which links domains I and IV. The crystal structure of the AnxA11 core highlights main-chain hydrogen bonding interactions formed through this bridging segment, which are likely conserved in most annexins. The structure was also used to study the currently known ALS mutations in AnxA11. Three of these mutations correspond to buried Arg residues highly conserved in the annexin family, indicating central roles in annexin folding. The structural data provide starting points for detailed structure-function studies of both full-length AnxA11 and the disease variants being identified in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Anexinas/química , Anexinas/genética , Mutación/genética , Secuencia de Aminoácidos , Animales , Modelos Moleculares , Proteínas Mutantes/química , Multimerización de Proteína , Estabilidad Proteica , Ratas , Dispersión del Ángulo Pequeño , Solubilidad , Soluciones , Relación Estructura-Actividad , Temperatura , Difracción de Rayos X
11.
J Neurosci ; 40(7): 1405-1426, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-31915257

RESUMEN

BDNF signaling via its transmembrane receptor TrkB has an important role in neuronal survival, differentiation, and synaptic plasticity. Remarkably, BDNF is capable of modulating its own expression levels in neurons, forming a transcriptional positive feedback loop. In the current study, we have investigated this phenomenon in primary cultures of rat cortical neurons using overexpression of dominant-negative forms of several transcription factors, including CREB, ATF2, C/EBP, USF, and NFAT. We show that CREB family transcription factors, together with the coactivator CBP/p300, but not the CRTC family, are the main regulators of rat BDNF gene expression after TrkB signaling. CREB family transcription factors are required for the early induction of all the major BDNF transcripts, whereas CREB itself directly binds only to BDNF promoter IV, is phosphorylated in response to BDNF-TrkB signaling, and activates transcription from BDNF promoter IV by recruiting CBP. Our complementary reporter assays with BDNF promoter constructs indicate that the regulation of BDNF by CREB family after BDNF-TrkB signaling is generally conserved between rat and human. However, we demonstrate that a nonconserved functional cAMP-responsive element in BDNF promoter IXa in humans renders the human promoter responsive to BDNF-TrkB-CREB signaling, whereas the rat ortholog is unresponsive. Finally, we show that extensive BDNF transcriptional autoregulation, encompassing all major BDNF transcripts, occurs also in vivo in the adult rat hippocampus during BDNF-induced LTP. Collectively, these results improve the understanding of the intricate mechanism of BDNF transcriptional autoregulation.SIGNIFICANCE STATEMENT Deeper understanding of stimulus-specific regulation of BDNF gene expression is essential to precisely adjust BDNF levels that are dysregulated in various neurological disorders. Here, we have elucidated the molecular mechanisms behind TrkB signaling-dependent BDNF mRNA induction and show that CREB family transcription factors are the main regulators of BDNF gene expression after TrkB signaling. Our results suggest that BDNF-TrkB signaling may induce BDNF gene expression in a distinct manner compared with neuronal activity. Moreover, our data suggest the existence of a stimulus-specific distal enhancer modulating BDNF gene expression.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/fisiología , Factor Neurotrófico Derivado del Encéfalo/genética , Corteza Cerebral/citología , Regulación de la Expresión Génica/genética , Hipocampo/citología , Proteínas del Tejido Nervioso/fisiología , Neuronas/metabolismo , Transducción de Señal/fisiología , Transcripción Genética/genética , Animales , Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Factor Neurotrófico Derivado del Encéfalo/farmacología , Células Cultivadas , Corteza Cerebral/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/fisiología , Proteínas del Citoesqueleto/biosíntesis , Proteínas del Citoesqueleto/genética , Retroalimentación Fisiológica , Femenino , Genes Dominantes , Genes Reporteros , Genes Sintéticos , Hipocampo/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Regiones Promotoras Genéticas , Inhibidores de Proteínas Quinasas/farmacología , Ratas , Ratas Sprague-Dawley , Receptor trkB/fisiología , Proteínas Recombinantes/farmacología , Elementos de Respuesta , Especificidad de la Especie , Transducción Genética
12.
Mol Neurobiol ; 57(3): 1432-1445, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31754996

RESUMEN

Activity-dependent synaptic plasticity involves rapid regulation of neuronal protein synthesis on a time-scale of minutes. miRNA function in synaptic plasticity and memory formation has been elucidated by stable experimental manipulation of miRNA expression and activity using transgenic approaches and viral vectors. However, the impact of rapid miRNA modulation on synaptic efficacy is unknown. Here, we examined the effect of acute (12 min), intrahippocampal infusion of a miR-34a antagonist (antimiR) on medial perforant path-evoked synaptic transmission in the dentate gyrus of adult anesthetised rats. AntimiR-34a infusion acutely depressed medial perforant path-evoked field excitatory post-synaptic potentials (fEPSPs). The fEPSP decrease was detected within 9 min of infusion, lasted for hours, and was associated with knockdown of antimiR-34a levels. AntimiR-34a-induced synaptic depression was sequence-specific; no changes were elicited by infusion of scrambled or mismatch control. The rapid modulation suggests that a target, or set of targets, is regulated by miR-34a. Western blot analysis of dentate gyrus lysates revealed enhanced expression of Arc, a known miR-34a target, and four novel predicted targets (Ctip2, PKI-1α, TCF4 and Ube2g1). Remarkably, antimiR-34a had no effect when infused during the maintenance phase of long-term potentiation. We conclude that miR-34a regulates basal synaptic efficacy in the adult dentate gyrus in vivo. To our knowledge, these in vivo findings are the first to demonstrate acute (< 9 min) regulation of synaptic efficacy in the adult brain by a miRNA.


Asunto(s)
Giro Dentado/metabolismo , Hipocampo/metabolismo , Potenciación a Largo Plazo/genética , Plasticidad Neuronal/genética , Animales , Potenciales Postsinápticos Excitadores/fisiología , Potenciación a Largo Plazo/efectos de los fármacos , MicroARNs/metabolismo , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/genética
13.
Semin Cell Dev Biol ; 77: 33-42, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28890419

RESUMEN

Mammalian excitatory synapses express diverse types of synaptic plasticity. A major challenge in neuroscience is to understand how a neuron utilizes different types of plasticity to sculpt brain development, function, and behavior. Neuronal activity-induced expression of the immediate early protein, Arc, is critical for long-term potentiation and depression of synaptic transmission, homeostatic synaptic scaling, and adaptive functions such as long-term memory formation. However, the molecular basis of Arc protein function as a regulator of synaptic plasticity and cognition remains a puzzle. Recent work on the biophysical and structural properties of Arc, its protein-protein interactions and post-translational modifications have shed light on the issue. Here, we present Arc protein as a flexible, multifunctional and interactive hub. Arc interacts with specific effector proteins in neuronal compartments (dendritic spines, nuclear domains) to bidirectionally regulate synaptic strength by distinct molecular mechanisms. Arc stability, subcellular localization, and interactions are dictated by synaptic activity and post-translational modification of Arc. This functional versatility and context-dependent signaling supports a view of Arc as a highly specialized master organizer of long-term synaptic plasticity, critical for information storage and cognition.


Asunto(s)
Encéfalo/fisiología , Cognición/fisiología , Proteínas del Citoesqueleto/metabolismo , Memoria a Largo Plazo/fisiología , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal/fisiología , Transmisión Sináptica/fisiología , Animales , Encéfalo/crecimiento & desarrollo , Endocitosis/fisiología , Humanos , Ratones , Procesamiento Proteico-Postraduccional/genética , Ratas , Receptores de Glutamato/metabolismo , Sinapsis/metabolismo
14.
eNeuro ; 4(6)2017.
Artículo en Inglés | MEDLINE | ID: mdl-29255796

RESUMEN

Brain-derived neurotrophic factor (BDNF) is an important mediator of long-term synaptic potentiation (LTP) in the hippocampus. The local effects of BDNF depend on the activation of translation activity, which requires the delivery of transcripts to the synapse. In this work, we found that neuronal activity regulates the dendritic localization of the RNA-binding protein heterogeneous nuclear ribonucleoprotein K (hnRNP K) in cultured rat hippocampal neurons by stimulating BDNF-Trk signaling. Microarray experiments identified a large number of transcripts that are coimmunoprecipitated with hnRNP K, and about 60% of these transcripts are dissociated from the protein upon stimulation of rat hippocampal neurons with BDNF. In vivo studies also showed a role for TrkB signaling in the dissociation of transcripts from hnRNP K upon high-frequency stimulation (HFS) of medial perforant path-granule cell synapses of male rat dentate gyrus (DG). Furthermore, treatment of rat hippocampal synaptoneurosomes with BDNF decreased the coimmunoprecipitation of hnRNP K with mRNAs coding for glutamate receptor subunits, Ca2+- and calmodulin-dependent protein kinase IIß (CaMKIIß) and BDNF. Downregulation of hnRNP K impaired the BDNF-induced enhancement of NMDA receptor (NMDAR)-mediated mEPSC, and similar results were obtained upon inhibition of protein synthesis with cycloheximide. The results demonstrate that BDNF regulates specific populations of hnRNP-associated mRNAs in neuronal dendrites and suggests an important role of hnRNP K in BDNF-dependent forms of synaptic plasticity.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Dendritas/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo K/metabolismo , Hipocampo/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo , Animales , Animales no Consanguíneos , Células Cultivadas , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Células HEK293 , Ribonucleoproteína Heterogénea-Nuclear Grupo K/genética , Hipocampo/citología , Humanos , Masculino , Análisis por Micromatrices , Microelectrodos , Transporte de ARN/fisiología , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Ratas Wistar , Sinaptosomas/metabolismo
15.
Front Neural Circuits ; 11: 70, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29085284

RESUMEN

Millions of people worldwide work during the night, resulting in disturbed circadian rhythms and sleep loss. This may cause deficits in cognitive functions, impaired alertness and increased risk of errors and accidents. Disturbed circadian rhythmicity resulting from night shift work could impair brain function and cognition through disrupted synthesis of proteins involved in synaptic plasticity and neuronal function. Recently, the circadian transcription factor brain-and-muscle arnt-like protein 1 (BMAL1) has been identified as a promoter of mRNA translation initiation, the most highly regulated step in protein synthesis, through binding to the mRNA "cap". In this study we investigated the effects of simulated shift work on protein synthesis markers. Male rats (n = 40) were exposed to forced activity, either in their rest phase (simulated night shift work) or in their active phase (simulated day shift work) for 3 days. Following the third work shift, experimental animals and time-matched undisturbed controls were euthanized (rest work at ZT12; active work at ZT0). Tissue lysates from two brain regions (prefrontal cortex, PFC and hippocampus) implicated in cognition and sleep loss, were analyzed with m7GTP (cap) pull-down to examine time-of-day variation and effects of simulated shift work on cap-bound protein translation. The results show time-of-day variation of protein synthesis markers in PFC, with increased protein synthesis at ZT12. In the hippocampus there was little difference between ZT0 and ZT12. Active phase work did not induce statistically significant changes in protein synthesis markers at ZT0 compared to time-matched undisturbed controls. Rest work, however, resulted in distinct brain-region specific changes of protein synthesis markers compared to time-matched controls at ZT12. While no changes were observed in the hippocampus, phosphorylation of cap-bound BMAL1 and its regulator S6 kinase beta-1 (S6K1) was significantly reduced in the PFC, together with significant reduction in the synaptic plasticity associated protein activity-regulatedcytoskeleton-associated protein (Arc). Our results indicate considerable time-of-day and brain-region specific variation in cap-dependent translation initiation. We concludethat simulated night shift work in rats disrupts the pathways regulating the circadian component of the translation of mRNA in the PFC, and that this may partly explain impaired waking function during night shift work.


Asunto(s)
Factores de Transcripción ARNTL/metabolismo , Ritmo Circadiano/fisiología , Corteza Prefrontal/metabolismo , Horario de Trabajo por Turnos , Animales , Proteínas del Citoesqueleto/metabolismo , Regulación de la Expresión Génica , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Modelos Animales , Actividad Motora/fisiología , Proteínas del Tejido Nervioso/metabolismo , Fosforilación , Corteza Prefrontal/patología , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Ratas Wistar , Proteínas Quinasas S6 Ribosómicas/metabolismo , Factores de Tiempo
16.
Front Cell Neurosci ; 11: 294, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28979192

RESUMEN

Activity-regulated cytoskeleton-associated protein, Arc, is a major regulator of long-term synaptic plasticity and memory formation. Here we reveal a novel interaction partner of Arc, a resident endoplasmic reticulum transmembrane protein, calnexin. We show an interaction between recombinantly-expressed GST-tagged Arc and endogenous calnexin in HEK293, SH-SY5Y neuroblastoma and PC12 cells. The interaction was dependent on the central linker region of the Arc protein that is also required for endocytosis of AMPA-type glutamate receptors. High-resolution proximity-ligation assays (PLAs) demonstrate molecular proximity of endogenous Arc with the cytosolic C-terminus, but not the lumenal N-terminus of calnexin. In hippocampal neuronal cultures treated with brain-derived neurotrophic factor (BDNF), Arc interacted with calnexin in the perinuclear cytoplasm and dendritic shaft. Arc also interacted with C-terminal calnexin in the adult rat dentate gyrus (DG). After induction of long-term potentiation (LTP) in the perforant path projection to the DG of adult anesthetized rats, enhanced interaction between Arc and calnexin was obtained in the dentate granule cell layer (GCL). Although Arc and calnexin are both implicated in the regulation of receptor endocytosis, no modulation of endocytosis was detected in transferrin uptake assays. Previous work showed that Arc interacts with multiple protein partners to regulate synaptic transmission and nuclear signaling. The identification of calnexin as a binding partner further supports the role of Arc as a hub protein and extends the range of Arc function to the endoplasmic reticulum, though the function of the Arc/calnexin interaction remains to be defined.

17.
Neuroscience ; 360: 68-80, 2017 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-28736134

RESUMEN

Activity-regulated cytoskeletal-associated protein (Arc) is implicated as a master regulator of long-term synaptic plasticity and memory formation in mammalian brain. Arc acts at synapses and within the nucleus, but the mechanisms controlling Arc localization and function are little known. As Arc transcription and translation are regulated by extracellularsignal-regulated kinase (ERK) signaling, we asked whether Arc protein itself is phosphorylated by ERK. GST-fused Arc of rat origin was able to pull down endogenous ERK2 from rat hippocampal lysates. Using a peptide array, we show that ERK binds a non-canonical docking (D) motif in the C-terminal domain of Arc, and this interaction is abolished by phosphorylation of Tyr309. Activated ERK2 phosphorylated bacterially expressed Arc in vitro at all five predicted sites, as confirmed by phospho-specific protein staining and LC-MS/MS analysis. In neuroblastoma cells expressing epitope tagged-Arc, we demonstrate ERK-dependent phosphorylation of Arc in response to activation of muscarinic cholinergic receptors with carbachol. Using phosphosite-specific antibodies, this stimulus-evoked phosphorylation was shown to occur on Ser206 located within the central hinge region of Arc. In cultured hippocampal neurons expressing phosphomutant Arc under control of the activity-dependent promoter, we show that Ser206 phosphorylation regulates the nuclear:cytosolic localization of Arc. Thus, the neuronal activity-induced phosphomimic exhibits enhanced cytosolic localization relative to phosphodeficient and wild-type Arc. Furthermore, enhanced Ser206 phosphorylation of endogenous Arc was detected in the dentate gyrus cytoskeletal fraction after induction of long-term potentiation (LTP) in live rats. Taken together, this work demonstrates stimulus-evoked ERK-dependent phosphorylation and regulation of Arc protein.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Potenciación a Largo Plazo/fisiología , Proteínas del Tejido Nervioso/metabolismo , Plasticidad Neuronal/fisiología , Animales , Citoesqueleto/metabolismo , Hipocampo/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Neuronas/metabolismo , Fosforilación , Ratas , Transducción de Señal/efectos de los fármacos , Sinapsis/metabolismo
18.
Artículo en Inglés | MEDLINE | ID: mdl-28553222

RESUMEN

Activity-regulatedcytoskeleton-associated protein (Arc) protein is implicated as a master regulator of long-term forms of synaptic plasticity and memory formation, but the mechanisms controlling Arc protein function are little known. Post-translation modification by small ubiquitin-like modifier (SUMO) proteins has emerged as a major mechanism for regulating protein-protein interactions and function. We first show in cell lines that ectopically expressed Arc undergoes mono-SUMOylation. The covalent addition of a single SUMO1 protein was confirmed by in vitro SUMOylation of immunoprecipitated Arc. To explore regulation of endogenous Arc during synaptic plasticity, we induced long-term potentiation (LTP) in the dentate gyrus of live anesthetized rats. Using coimmunoprecipitation of native proteins, we show that Arc synthesized during the maintenance phase of LTP undergoes dynamic mono-SUMO1-ylation. Levels of unmodified Arc increase in multiple subcellular fractions (cytosol, membrane, nuclear and cytoskeletal), whereas enhanced Arc SUMOylation was specific to the synaptoneurosomal and the cytoskeletal fractions. Dentate gyrus LTP consolidation requires a period of sustained Arc synthesis driven by brain-derived neurotrophic factor (BDNF) signaling. Local infusion of the BDNF scavenger, TrkB-Fc, during LTP maintenance resulted in rapid reversion of LTP, inhibition of Arc synthesis and loss of enhanced Arc SUMO1ylation. Furthermore, coimmunoprecipitation analysis showed that SUMO1-ylated Arc forms a complex with the F-actin-binding protein drebrin A, a major regulator of cytoskeletal dynamics in dendritic spines. Although Arc also interacted with dynamin 2, calcium/calmodulindependentprotein kinase II-beta (CaMKIIß), and postsynaptic density protein-95 (PSD-95), these complexes lacked SUMOylated Arc. The results support a model in which newly synthesized Arc is SUMOylated and targeted for actin cytoskeletal regulation during in vivo LTP.

20.
Front Neurosci ; 9: 351, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26483626

RESUMEN

Long-term potentiation (LTP) of synaptic transmission is recognized as a cellular mechanism for learning and memory storage. Although de novo gene transcription is known to be required in the formation of stable LTP, the molecular mechanisms underlying synaptic plasticity remain elusive. Noncoding RNAs have emerged as major regulatory molecules that are abundantly and specifically expressed in the mammalian brain. By combining RNA-seq analysis with LTP induction in the dentate gyrus of live rats, we provide the first global transcriptomic analysis of synaptic plasticity in the adult brain. Expression profiles of mRNAs and long noncoding RNAs (lncRNAs) were obtained at 30 min, 2 and 5 h after high-frequency stimulation of the perforant pathway. The temporal analysis revealed dynamic expression profiles of lncRNAs with many positively, and highly, correlated to protein-coding genes with known roles in synaptic plasticity, suggesting their possible involvement in LTP. In light of observations suggesting a role for retrotransposons in brain function, we examined the expression of various classes of repeat elements. Our analysis identifies dynamic regulation of LINE1 and SINE retrotransposons, and extensive regulation of tRNA. These experiments reveal a hitherto unknown complexity of gene expression in long-term synaptic plasticity involving the dynamic regulation of lncRNAs and repeat elements. These findings provide a broader foundation for elucidating the transcriptional and epigenetic regulation of synaptic plasticity in both the healthy brain and in neurodegenerative and neuropsychiatric disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA