Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Psychoneuroendocrinology ; 165: 107033, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38569396

RESUMEN

Peripartum mood and anxiety disorders (PMADs) affect 15-20% of peripartum women and are well known to disrupt infant caregiving. A recent study in humans reported that anxiety and depressive symptoms were alleviated by peripartum treatment with the probiotic, Lactocaseibacillus rhamnosus HN001. The current study determined the effects of chronic Lactocaseibacillus rhamnosus HN001 (HN001) treatment on postpartum affective and caregiving behaviors in a laboratory rodent model. Female rats were given probiotic overnight in their drinking water, or untreated water, from the first day of pregnancy through postpartum day 10. To determine whether the HN001 effects were influenced by a background of stress, half the females underwent chronic variable pregnancy stress and the other half remained undisturbed. The results revealed that, even without pregnancy stress, HN001 reduced postpartum anxiety-related behavior, increased variability in behavioral fragmentation when dams interacted with pups, increased time away from pups, and decreased prefrontal cortex norepinephrine (NE), dopamine (DA) and serotonin (5-HT). Probiotic plus stress consistently reduced the latency to float in the forced swim test, increased DA and 5-HT turnovers in the prefrontal cortex, increased hippocampal NE, and reduced hypothalamic DA. Fecal microbe alpha and beta diversities were lower postpartum than prepartum, which was prevented by the probiotic treatment and/or stress. Across the entire sample lower postpartum anxiety behavior was associated with lower fecal Bacteroides dorei. This study reveals novel information about how L. rhamnosus HN001 influences postpartum behavior and microbiota-gut-brain physiology in female laboratory rats, with implications for probiotic supplement use by pregnant and postpartum women.


Asunto(s)
Ansiedad , Microbioma Gastrointestinal , Lacticaseibacillus rhamnosus , Periodo Posparto , Probióticos , Animales , Femenino , Probióticos/farmacología , Probióticos/administración & dosificación , Ratas , Ansiedad/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/fisiología , Periodo Posparto/metabolismo , Embarazo , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Serotonina/metabolismo , Ratas Sprague-Dawley , Corteza Prefrontal/metabolismo , Corteza Prefrontal/efectos de los fármacos , Norepinefrina/metabolismo , Dopamina/metabolismo , Estrés Psicológico/metabolismo , Conducta Materna/fisiología , Conducta Materna/efectos de los fármacos , Monoaminas Biogénicas/metabolismo
2.
J Neurosci Methods ; 401: 110003, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37918446

RESUMEN

Recently, many funding agencies have released guidelines on the importance of considering sex as a biological variable (SABV) as an experimental factor, aiming to address sex differences and avoid possible sex biases to enhance the reproducibility and translational relevance of preclinical research. In neuroscience and pharmacology, the female sex is often omitted from experimental designs, with researchers generalizing male-driven outcomes to both sexes, risking a biased or limited understanding of disease mechanisms and thus potentially ineffective therapeutics. Herein, we describe key methodological aspects that should be considered when sex is factored into in vitro and in vivo experiments and provide practical knowledge for researchers to incorporate SABV into preclinical research. Both age and sex significantly influence biological and behavioral processes due to critical changes at different timepoints of development for males and females and due to hormonal fluctuations across the rodent lifespan. We show that including both sexes does not require larger sample sizes, and even if sex is included as an independent variable in the study design, a moderate increase in sample size is sufficient. Moreover, the importance of tracking hormone levels in both sexes and the differentiation between sex differences and sex-related strategy in behaviors are explained. Finally, the lack of robust data on how biological sex influences the pharmacokinetic (PK), pharmacodynamic (PD), or toxicological effects of various preclinically administered drugs to animals due to the exclusion of female animals is discussed, and methodological strategies to enhance the rigor and translational relevance of preclinical research are proposed.


Asunto(s)
Proyectos de Investigación , Caracteres Sexuales , Animales , Masculino , Femenino , Reproducibilidad de los Resultados , Factores Sexuales , Tamaño de la Muestra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA