Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
2.
Pharmaceuticals (Basel) ; 17(5)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38794117

RESUMEN

BACKGROUND: In this investigation, we explored the effects of pharmacological cholinergic stimulation on cardiac function and renal inflammation following acute myocardial infarction (AMI) in spontaneously hypertensive rats (SHRs). METHODS: Adult male SHRs were randomized into three experimental groups: sham-operated; AMI + Veh (infarcted, treated with vehicle); and AMI + PY (infarcted, treated with the cholinesterase inhibitor, pyridostigmine bromide (PY)-40 mg/kg, once daily for seven days). Rats were euthanized 7 or 30 days post-surgery. The clinical parameters were assessed on the day before euthanasia. Subsequent to euthanasia, blood samples were collected and renal tissues were harvested for histological and gene expression analyses aimed to evaluate inflammation and injury. RESULTS: Seven days post-surgery, the AMI + PY group demonstrated improvements in left ventricular diastolic function and autonomic regulation, and a reduction in renal macrophage infiltration compared to the AMI + Veh group. Furthermore, there was a notable downregulation in pro-inflammatory gene expression and an upregulation in anti-inflammatory gene expression. Analysis 30 days post-surgery showed that PY treatment had a sustained positive effect on renal gene expression, correlated with a decrease in biomarkers, indicative of subclinical kidney injury. CONCLUSIONS: Short-term cholinergic stimulation with PY provides both cardiac and renal protection by mitigating the inflammatory response after AMI.

4.
Brain Behav Immun ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38670240

RESUMEN

BACKGROUND: The vagus nerve plays an important role in neuroimmune interactions and in the regulation of inflammation. A major source of efferent vagus nerve fibers that contribute to the regulation of inflammation is the brainstem dorsal motor nucleus of the vagus (DMN) as recently shown using optogenetics. In contrast to optogenetics, electrical neuromodulation has broad therapeutic implications. However, the anti-inflammatory effectiveness of electrical stimulation of the DMN (eDMNS) and the possible heart rate (HR) alterations associated with this approach have not been investigated. Here, we examined the effects of eDMNS on HR and cytokine levels in mice administered with lipopolysaccharide (LPS, endotoxin) and in mice subjected to cecal ligation and puncture (CLP) sepsis. METHODS: Anesthetized male 8-10-week-old C57BL/6 mice on a stereotaxic frame were subjected to eDMNS using a concentric bipolar electrode inserted into the left or right DMN or sham stimulation. eDMNS (500, 250 or 50 µA at 30 Hz, for 1 min) was performed and HR recorded. In endotoxemia experiments, sham or eDMNS utilizing 250 µA or 50 µA was performed for 5 mins and was followed by LPS (0.5 mg/kg) i.p. administration. eDMNS was also applied in mice with cervical unilateral vagotomy or sham operation. In CLP experiments sham or left eDMNS was performed immediately post CLP. Cytokines and corticosterone were analyzed 90 mins after LPS administration or 24 h after CLP. CLP survival was monitored for 14 days. RESULTS: Either left or right eDMNS at 500 µA and 250 µA decreased HR, compared with baseline pre-stimulation. This effect was not observed at 50 µA. Left side eDMNS at 50 µA, compared with sham stimulation, significantly decreased serum and splenic levels of the pro-inflammatory cytokine TNF and increased serum levels of the anti-inflammatory cytokine IL-10 during endotoxemia. The anti-inflammatory effect of eDMNS was abrogated in mice with unilateral vagotomy and was not associated with serum corticosterone alterations. Right side eDMNS in endotoxemic mice suppressed serum TNF and increased serum IL-10 levels but had no effects on splenic cytokines. In mice with CLP, left side eDMNS suppressed serum IL-6, as well as splenic IL-6 and increased splenic IL-10 and significantly improved the survival rate of CLP mice. CONCLUSIONS: For the first time we show that a regimen of eDMNS which does not cause bradycardia alleviates LPS-induced inflammation. These eDMNS anti-inflammatory effects require an intact vagus nerve and are not associated with corticosteroid alterations. eDMNS also decreases inflammation and improves survival in a model of polymicrobial sepsis. These findings are of interest for further studies exploring bioelectronic anti-inflammatory approaches targeting the brainstem DMN.

5.
J Neuroinflammation ; 21(1): 3, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38178134

RESUMEN

BACKGROUND: The involvement of the autonomic nervous system in the regulation of inflammation is an emerging concept with significant potential for clinical applications. Recent studies demonstrate that stimulating the vagus nerve activates the cholinergic anti-inflammatory pathway that inhibits pro-inflammatory cytokines and controls inflammation. The α7 nicotinic acetylcholine receptor (α7nAChR) on macrophages plays a key role in mediating cholinergic anti-inflammatory effects through a downstream intracellular mechanism involving inhibition of NF-κB signaling, which results in suppression of pro-inflammatory cytokine production. However, the role of the α7nAChR in the regulation of other aspects of the immune response, including the recruitment of monocytes/macrophages to the site of inflammation remained poorly understood. RESULTS: We observed an increased mortality in α7nAChR-deficient mice (compared with wild-type controls) in mice with endotoxemia, which was paralleled with a significant reduction in the number of monocyte-derived macrophages in the lungs. Corroborating these results, fluorescently labeled α7nAChR-deficient monocytes adoptively transferred to WT mice showed significantly diminished recruitment to the inflamed tissue. α7nAChR deficiency did not affect monocyte 2D transmigration across an endothelial monolayer, but it significantly decreased the migration of macrophages in a 3D fibrin matrix. In vitro analysis of major adhesive receptors (L-selectin, ß1 and ß2 integrins) and chemokine receptors (CCR2 and CCR5) revealed reduced expression of integrin αM and αX on α7nAChR-deficient macrophages. Decreased expression of αMß2 was confirmed on fluorescently labeled, adoptively transferred α7nAChR-deficient macrophages in the lungs of endotoxemic mice, indicating a potential mechanism for α7nAChR-mediated migration. CONCLUSIONS: We demonstrate a novel role for the α7nAChR in mediating macrophage recruitment to inflamed tissue, which indicates an important new aspect of the cholinergic regulation of immune responses and inflammation.


Asunto(s)
Endotoxemia , Receptor Nicotínico de Acetilcolina alfa 7 , Ratones , Animales , Receptor Nicotínico de Acetilcolina alfa 7/genética , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Macrófagos/metabolismo , Inflamación/metabolismo , Citocinas/metabolismo , Endotoxemia/metabolismo , Colinérgicos/metabolismo
6.
Mol Med ; 29(1): 149, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37907853

RESUMEN

BACKGROUND: Acute pancreatitis is a common and serious inflammatory condition currently lacking disease modifying therapy. The cholinergic anti-inflammatory pathway (CAP) is a potent protective anti-inflammatory response activated by vagus nerve-dependent α7 nicotinic acetylcholine receptor (α7nAChR) signaling using splenic CD4+ T cells as an intermediate. Activating the CAP ameliorates experimental acute pancreatitis. Galantamine is an acetylcholinesterase inhibitor (AChEI) which amplifies the CAP via modulation of central muscarinic ACh receptors (mAChRs). However, as mAChRs also activate pancreatitis, it is currently unknown whether galantamine would be beneficial in acute pancreatitis. METHODS: The effect of galantamine (1-6 mg/kg-body weight) on caerulein-induced acute pancreatitis was evaluated in mice. Two hours following 6 hourly doses of caerulein (50 µg/kg-body weight), organ and serum analyses were performed with accompanying pancreatic histology. Experiments utilizing vagotomy, gene knock out (KO) technology and the use of nAChR antagonists were also performed. RESULTS: Galantamine attenuated pancreatic histologic injury which was mirrored by a reduction in serum amylase and pancreatic inflammatory cytokines and an increase the anti-inflammatory cytokine IL-10 in the serum. These beneficial effects were not altered by bilateral subdiaphragmatic vagotomy, KO of either choline acetyltransferase+ T cells or α7nAChR, or administration of the nAChR ganglionic blocker mecamylamine or the more selective α7nAChR antagonist methyllycaconitine. CONCLUSION: Galantamine improves acute pancreatitis via a mechanism which does not involve previously established physiological and molecular components of the CAP. As galantamine is an approved drug in widespread clinical use with an excellent safety record, our findings are of interest for further evaluating the potential benefits of this drug in patients with acute pancreatitis.


Asunto(s)
Galantamina , Pancreatitis , Humanos , Ratones , Animales , Galantamina/farmacología , Galantamina/uso terapéutico , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Acetilcolinesterasa/metabolismo , Acetilcolinesterasa/uso terapéutico , Ceruletida/metabolismo , Ceruletida/uso terapéutico , Enfermedad Aguda , Pancreatitis/tratamiento farmacológico , Pancreatitis/patología , Citocinas/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Peso Corporal
7.
Res Sq ; 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37841878

RESUMEN

Chronic low-grade inflammation has been recognized as an underlying event linking obesity to cardiovascular disease (CVD). However, inflammatory alterations in individuals who are overweight remain understudied. To provide insight, we determined the levels of key circulating biomarkers of endotoxemia and inflammation, including lipopolysaccharide-binding protein (LBP), CRP, IL-6, leptin, and adiponectin in adult female subjects (n = 20) who were lean or overweight and had high cholesterol and/or high blood pressure - two important conventional risk factors for CVD. Plasma levels of LBP (a recognized marker of metabolic endotoxemia in obesity) were significantly higher in the overweight group compared with the lean group (P = 0.005). The levels of CRP, a general marker of inflammation, were also significantly higher in overweight subjects (P = 0.01), as were IL-6 (P = 0.02) and leptin (P = 0.002), pro-inflammatory mediators associated with cardiovascular risk. Levels of adiponectin, an adipokine with anti-inflammatory and anti-atherogenic functions, were significantly lower in the overweight group (P = 0.002). The leptin/adiponectin ratio, a preferential atherogenic marker was significantly increased in women who are overweight (P = 0.02). LBP, CRP, leptin, and adiponectin levels significantly correlated with BMI, but not with age. These results reveal the presence of subclinical endotoxemia and a pro-inflammatory state in overweight women and are of interest for further studies with the goal for improved understanding of women's cardiovascular health.

8.
J Neuroinflammation ; 20(1): 236, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848937

RESUMEN

BACKGROUND: The noradrenergic innervation of the spleen is implicated in the autonomic control of inflammation and has been the target of neurostimulation therapies for inflammatory diseases. However, there is no real-time marker of its successful activation, which hinders the development of anti-inflammatory neurostimulation therapies and mechanistic studies in anti-inflammatory neural circuits. METHODS: In mice, we performed fast-scan cyclic voltammetry (FSCV) in the spleen during intravenous injections of norepinephrine (NE), and during stimulation of the vagus, splanchnic, or splenic nerves. We defined the stimulus-elicited charge generated at the oxidation potential for NE (~ 0.88 V) as the "NE voltammetry signal" and quantified the dependence of the signal on NE dose and intensity of neurostimulation. We correlated the NE voltammetry signal with the anti-inflammatory effect of splenic nerve stimulation (SpNS) in a model of lipopolysaccharide- (LPS) induced endotoxemia, quantified as suppression of TNF release. RESULTS: The NE voltammetry signal is proportional to the estimated peak NE blood concentration, with 0.1 µg/mL detection threshold. In response to SpNS, the signal increases within seconds, returns to baseline minutes later, and is blocked by interventions that deplete NE or inhibit NE release. The signal is elicited by efferent, but not afferent, electrical or optogenetic vagus nerve stimulation, and by splanchnic nerve stimulation. The magnitude of the signal during SpNS is inversely correlated with subsequent TNF suppression in endotoxemia and explains 40% of the variance in TNF measurements. CONCLUSIONS: FSCV in the spleen provides a marker for real-time monitoring of anti-inflammatory activation of the splenic innervation during autonomic stimulation.


Asunto(s)
Endotoxemia , Norepinefrina , Ratones , Animales , Bazo/fisiología , Nervio Vago/fisiología , Antiinflamatorios , Estimulación Eléctrica
9.
bioRxiv ; 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-37292846

RESUMEN

Background: The vagus nerve plays an important role in neuroimmune interactions and in the regulation of inflammation. A major source of efferent vagus nerve fibers that contribute to the regulation of inflammation is the brainstem dorsal motor nucleus of the vagus (DMN) as recently shown using optogenetics. In contrast to optogenetics, electrical neuromodulation has broad therapeutic implications, but the anti-inflammatory efficacy of electrical DMN stimulation (eDMNS) was not previously investigated. Here, we examined the effects of eDMNS on heart rate (HR) and cytokine levels in murine endotoxemia as well as the cecal ligation and puncture (CLP) model of sepsis. Methods: Anesthetized male 8-10-week-old C57BL/6 mice on a stereotaxic frame were subjected to eDMNS using a concentric bipolar electrode inserted into the left or right DMN or sham stimulation. eDMNS (50, 250 or 500 µA and 30 Hz, for 1 min) was performed and HR recorded. In endotoxemia experiments, sham or eDMNS utilizing 250 µA or 50 µA was performed for 5 mins and was followed by LPS (0.5 mg/kg) i.p. administration. eDMNS was also applied in mice with cervical unilateral vagotomy or sham operation. In CLP experiments sham or left eDMNS was performed immediately post CLP. Cytokines and corticosterone were analyzed 90 mins after LPS administration or 24h after CLP. CLP survival was monitored for 14 days. Results: Either left or right eDMNS at 250 µA and 500 µA decreased HR, compared with pre- and post-stimulation. This effect was not observed at 50 µA. Left side eDMNS at 50 µA, compared with sham stimulation, significantly decreased serum and splenic levels of the pro-inflammatory cytokine TNF and increased serum levels of the anti-inflammatory cytokine IL-10 during endotoxemia. The anti-inflammatory effect of eDMNS was abrogated in mice with unilateral vagotomy and were not associated with serum corticosterone alterations. Right side eDMNS suppressed serum TNF levels but had no effects on serum IL-10 and on splenic cytokines. In mice with CLP, left side eDMNS suppressed serum TNF and IL-6, as well as splenic IL-6 and increased splenic IL-10 and significantly improved the survival rate of CLP mice. Conclusions: For the first time we show that a regimen of eDMNS which does not cause bradycardia alleviates LPS-induced inflammation and these effects require an intact vagus nerve and are not associated with corticosteroid alterations. eDMNS also decreases inflammation and improves survival in a model of polymicrobial sepsis. These findings are of interest for further studies exploring bioelectronic anti-inflammatory approaches targeting the brainstem DMN.

10.
bioRxiv ; 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37293028

RESUMEN

Chronic low-grade inflammation has been recognized as an underlying event linking obesity to cardiovascular disease (CVD). However, inflammatory alterations in individuals who are overweight remain understudied. To provide insight, we determined the levels of key circulating biomarkers of endotoxemia and inflammation, including lipopolysaccharide-binding protein (LBP), CRP, IL-6, leptin, and adiponectin in adult female subjects (n=40) who were lean or overweight and had high cholesterol and/or high blood pressure - two important conventional risk factors for CVD. Plasma levels of LBP were significantly higher in the overweight group compared with the lean group (P=0.005). The levels of CRP were also significantly higher in overweight subjects (P=0.01), as were IL-6 (P=0.02) and leptin (P=0.002), pro-inflammatory mediators associated with cardiovascular risk. Levels of adiponectin, an adipokine with anti-inflammatory and anti-atherogenic functions, were significantly lower in the overweight group (P=0.002). The leptin/adiponectin ratio, a preferential atherogenic marker was significantly increased in women who are overweight (P=0.02). LBP, CRP, leptin, and adiponectin levels significantly correlated with BMI, but not with age and there was a significant correlation between LBP and IL-6 levels. These results reveal the presence of subclinical endotoxemia and a pro-inflammatory state in overweight women and are of interest for further studies with the goal for improved understanding of cardiovascular health risks in women.

11.
Front Immunol ; 14: 1166212, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180135

RESUMEN

Introduction: Inflammation is an inherently self-amplifying process, resulting in progressive tissue damage when unresolved. A brake on this positive feedback system is provided by the nervous system which has evolved to detect inflammatory signals and respond by activating anti-inflammatory processes, including the cholinergic anti-inflammatory pathway mediated by the vagus nerve. Acute pancreatitis, a common and serious condition without effective therapy, develops when acinar cell injury activates intrapancreatic inflammation. Prior study has shown that electrical stimulation of the carotid sheath, which contains the vagus nerve, boosts the endogenous anti-inflammatory response and ameliorates acute pancreatitis, but it remains unknown whether these anti-inflammatory signals originate in the brain. Methods: Here, we used optogenetics to selectively activate efferent vagus nerve fibers originating in the brainstem dorsal motor nucleus of the vagus (DMN) and evaluated the effects on caerulein-induced pancreatitis. Results: Stimulation of the cholinergic neurons in the DMN significantly attenuates the severity of pancreatitis as indicated by reduced serum amylase, pancreatic cytokines, tissue damage, and edema. Either vagotomy or silencing cholinergic nicotinic receptor signaling by pre-administration of the antagonist mecamylamine abolishes the beneficial effects. Discussion: These results provide the first evidence that efferent vagus cholinergic neurons residing in the brainstem DMN can inhibit pancreatic inflammation and implicate the cholinergic anti-inflammatory pathway as a potential therapeutic target for acute pancreatitis.


Asunto(s)
Pancreatitis , Humanos , Pancreatitis/tratamiento farmacológico , Enfermedad Aguda , Optogenética , Inflamación , Tronco Encefálico
12.
Bioelectron Med ; 9(1): 7, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-36998060

RESUMEN

BACKGROUND: There is emerging evidence that the nervous system regulates immune and metabolic alterations mediating Metabolic syndrome (MetS) pathogenesis via the vagus nerve. This study evaluated the effects of transcutaneous auricular vagus nerve stimulation (TAVNS) on key cardiovascular and inflammatory components of MetS. METHODS: We conducted an open label, randomized (2:1), two-arm, parallel-group controlled trial in MetS patients. Subjects in the treatment group (n = 20) received 30 min of TAVNS with a NEMOS® device placed on the cymba conchae of the left ear, once weekly. Patients in the control group (n = 10) received no stimulation. Hemodynamic, heart rate variability (HRV), biochemical parameters, and monocytes, progenitor endothelial cells, circulating endothelial cells, and endothelial micro particles were evaluated at randomization, after the first TAVNS treatment, and again after 8 weeks of follow-up. RESULTS: An improvement in sympathovagal balance (HRV analysis) was observed after the first TAVNS session. Only patients treated with TAVNS for 8 weeks had a significant decrease in office BP and HR, a further improvement in sympathovagal balance, with a shift of circulating monocytes towards an anti-inflammatory phenotype and endothelial cells to a reparative vascular profile. CONCLUSION: These results are of interest for further study of TAVNS as treatment of MetS.

13.
Mol Med ; 29(1): 4, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36650454

RESUMEN

BACKGROUND: Inflammation, the physiological response to infection and injury, is coordinated by the immune and nervous systems. Interleukin-1ß (IL-1ß) and other cytokines produced during inflammatory responses activate sensory neurons (nociceptors) to mediate the onset of pain, sickness behavior, and metabolic responses. Although nociceptors expressing Transient Receptor Potential Ankyrin-1 (TRPA1) can initiate inflammation, comparatively little is known about the role of TRPA1 nociceptors in the physiological responses to specific cytokines. METHODS: To monitor body temperature in conscious and unrestrained mice, telemetry probes were implanted into peritoneal cavity of mice. Using transgenic and tissue specific knockouts and chemogenetic techniques, we recorded temperature responses to the potent pro-inflammatory cytokine IL-1ß. Using calcium imaging, whole cell patch clamping and whole nerve recordings, we investigated the role of TRPA1 during IL-1ß-mediated neuronal activation. Mouse models of acute endotoxemia and sepsis were used to elucidate how specific activation, with optogenetics and chemogenetics, or ablation of TRPA1 neurons can affect the outcomes of inflammatory insults. All statistical tests were performed with GraphPad Prism 9 software and for all analyses, P ≤ 0.05 was considered statistically significant. RESULTS: Here, we describe a previously unrecognized mechanism by which IL-1ß activates afferent vagus nerve fibers to trigger hypothermia, a response which is abolished by selective silencing of neuronal TRPA1. Afferent vagus nerve TRPA1 signaling also inhibits endotoxin-stimulated cytokine storm and significantly reduces the lethality of bacterial sepsis. CONCLUSION: Thus, IL-1ß activates TRPA1 vagus nerve signaling in the afferent arm of a reflex anti-inflammatory response which inhibits cytokine release, induces hypothermia, and reduces the mortality of infection. This discovery establishes that TRPA1, an ion channel known previously as a pro-inflammatory detector of cold, pain, itch, and a wide variety of noxious molecules, also plays a specific anti-inflammatory role via activating reflex anti-inflammatory activity.


Asunto(s)
Hipotermia Inducida , Hipotermia , Interleucina-1beta , Canales de Potencial de Receptor Transitorio , Animales , Ratones , Ancirinas/metabolismo , Citocinas/metabolismo , Hipotermia/metabolismo , Inflamación/metabolismo , Interleucina-1beta/metabolismo , Fibras Nerviosas/metabolismo , Dolor/metabolismo , Reflejo , Células Receptoras Sensoriales/metabolismo , Canales de Potencial de Receptor Transitorio/genética , Canales de Potencial de Receptor Transitorio/metabolismo , Canal Catiónico TRPA1/genética , Canal Catiónico TRPA1/metabolismo , Nervio Vago/metabolismo
14.
Mol Med ; 28(1): 148, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36494621

RESUMEN

BACKGROUND: Autoinflammatory diseases, a diverse group of inherited conditions characterized by excessive innate immune activation, have limited therapeutic options. Neuroimmune circuits of the inflammatory reflex control innate immune overactivation and can be stimulated to treat disease using the acetylcholinesterase inhibitor galantamine. METHODS: We tested the efficacy of galantamine in a rodent model of the prototypical autoinflammatory disease familial Mediterranean fever (FMF). Multiple chronic disease markers were evaluated in animals that received long-term galantamine treatment compared to vehicle. RESULTS: Long-term treatment with galantamine attenuated the associated splenomegaly and anemia which are characteristic features of this disease. Further, treatment reduced inflammatory cell infiltration into affected organs and a subcutaneous air pouch. CONCLUSIONS: These findings suggest that galantamine attenuates chronic inflammation in this mouse model of FMF. Further research is warranted to explore the therapeutic potential of galantamine in FMF and other autoinflammatory diseases.


Asunto(s)
Fiebre Mediterránea Familiar , Ratones , Animales , Fiebre Mediterránea Familiar/tratamiento farmacológico , Galantamina/farmacología , Galantamina/uso terapéutico , Acetilcolinesterasa/uso terapéutico , Modelos Animales de Enfermedad , Inflamación/tratamiento farmacológico
15.
Bioelectron Med ; 8(1): 18, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36451231

RESUMEN

BACKGROUND: Brain metabolic alterations and neuroinflammation have been reported in several peripheral inflammatory conditions and present significant potential for targeting with new diagnostic approaches and treatments. However, non-invasive evaluation of these alterations remains a challenge. METHODS: Here, we studied the utility of a micro positron emission tomography (microPET) dual tracer ([11C]PBR28 - for microglial activation and [18F]FDG for energy metabolism) approach to assess brain dysfunction, including neuroinflammation in murine endotoxemia. MicroPET imaging data were subjected to advanced conjunction and individual analyses, followed by post-hoc analysis. RESULTS: There were significant increases in [11C]PBR28 and [18F]FDG uptake in the hippocampus of C57BL/6 J mice 6 h following LPS (2 mg/kg) intraperitoneal (i.p.) administration compared with saline administration. These results confirmed previous postmortem observations. In addition, patterns of significant simultaneous activation were demonstrated in the hippocampus, the thalamus, and the hypothalamus in parallel with other tracer-specific and region-specific alterations. These changes were observed in the presence of robust systemic inflammatory responses manifested by significantly increased serum cytokine levels. CONCLUSIONS: Together, these findings demonstrate the applicability of [11C]PBR28 - [18F]FDG dual tracer microPET imaging for assessing neuroinflammation and brain metabolic alterations in conditions "classically" characterized by peripheral inflammatory and metabolic pathogenesis.

16.
Neuron ; 110(21): 3627-3644, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36174571

RESUMEN

The nervous system maintains homeostasis and health. Homeostatic disruptions underlying the pathobiology of many diseases can be controlled by bioelectronic devices targeting CNS and peripheral neural circuits. New insights into the regulatory functions of the nervous system and technological developments in bioelectronics drive progress in the emerging field of bioelectronic medicine. Here, we provide an overview of key aspects of preclinical research, translation, and clinical advances in bioelectronic medicine.

17.
Mol Med ; 28(1): 57, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35578169

RESUMEN

BACKGROUND: Severe COVID-19 is characterized by pro-inflammatory cytokine release syndrome (cytokine storm) which causes high morbidity and mortality. Recent observational and clinical studies suggest famotidine, a histamine 2 receptor (H2R) antagonist widely used to treat gastroesophageal reflux disease, attenuates the clinical course of COVID-19. Because evidence is lacking for a direct antiviral activity of famotidine, a proposed mechanism of action is blocking the effects of histamine released by mast cells. Here we hypothesized that famotidine activates the inflammatory reflex, a brain-integrated vagus nerve mechanism which inhibits inflammation via alpha 7 nicotinic acetylcholine receptor (α7nAChR) signal transduction, to prevent cytokine storm. METHODS: The potential anti-inflammatory effects of famotidine and other H2R antagonists were assessed in mice exposed to lipopolysaccharide (LPS)-induced cytokine storm. As the inflammatory reflex is integrated and can be stimulated in the brain, and H2R antagonists penetrate the blood brain barrier poorly, famotidine was administered by intracerebroventricular (ICV) or intraperitoneal (IP) routes. RESULTS: Famotidine administered IP significantly reduced serum and splenic LPS-stimulated tumor necrosis factor (TNF) and IL-6 concentrations, significantly improving survival. The effects of ICV famotidine were significantly more potent as compared to the peripheral route. Mice lacking mast cells by genetic deletion also responded to famotidine, indicating the anti-inflammatory effects are not mast cell-dependent. Either bilateral sub-diaphragmatic vagotomy or genetic knock-out of α7nAChR abolished the anti-inflammatory effects of famotidine, indicating the inflammatory reflex as famotidine's mechanism of action. While the structurally similar H2R antagonist tiotidine displayed equivalent anti-inflammatory activity, the H2R antagonists cimetidine or ranitidine were ineffective even at very high dosages. CONCLUSIONS: These observations reveal a previously unidentified vagus nerve-dependent anti-inflammatory effect of famotidine in the setting of cytokine storm which is not replicated by high dosages of other H2R antagonists in clinical use. Because famotidine is more potent when administered intrathecally, these findings are also consistent with a primarily central nervous system mechanism of action.


Asunto(s)
COVID-19 , Famotidina , Animales , Antiinflamatorios , Síndrome de Liberación de Citoquinas , Famotidina/farmacología , Histamina , Antagonistas de los Receptores H2 de la Histamina , Lipopolisacáridos , Ratones , Reflejo , Nervio Vago , Receptor Nicotínico de Acetilcolina alfa 7
18.
Res Sq ; 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35441176

RESUMEN

Background. Severe COVID-19 is characterized by pro-inflammatory cytokine release syndrome (cytokine storm) which causes high morbidity and mortality. Recent observational and clinical studies suggest famotidine, a histamine 2 receptor (H2R) antagonist widely used to treat gastroesophageal reflux disease , attenuates the clinical course of COVID-19. Because evidence is lacking for a direct antiviral activity of famotidine, a proposed mechanism of action is blocking the effects of histamine released by mast cells. Here we hypothesized that famotidine activates the inflammatory reflex, a brain-integrated vagus nerve mechanism which inhibits inflammation via alpha 7 nicotinic acetylcholine receptor ( α7nAChR ) signal transduction, to prevent cytokine storm. Methods. The potential anti-inflammatory effects of famotidine and other H2R antagonists was assessed in mice exposed to lipopolysaccharide (LPS)-induced cytokine storm. As the inflammatory reflex is integrated and can be stimulated in the brain, and H2R antagonists penetrate the blood brain barrier poorly, famotidine was administered by intracerebroventricular (ICV) or intraperitoneal (IP) routes. Results. Famotidine administered IP significantly reduced serum and splenic LPS-stimulated tumor necrosis factor α and interleukin-6 concentrations, significantly improving survival. The effects of ICV famotidine were significantly more potent as compared to the peripheral route. Mice lacking mast cells by genetic deletion also responded to famotidine, indicating the anti-inflammatory effects are not mast cell dependent. Either bilateral sub-diaphragmatic vagotomy or genetic knock-out of α7nAChR abolished the anti-inflammatory effects of famotidine, indicating the inflammatory reflex as famotidine's mechanism of action. While the structurally similar H2R antagonist tiotidine displayed equivalent anti-inflammatory activity, the H2R antagonists cimetidine or ranitidine were ineffective even at very high dosages. Conclusions. These observations reveal a previously unidentified vagus nerve-dependent anti-inflammatory effect of famotidine in the setting of cytokine storm which is not replicated by high dosages of other H2R antagonists in clinical use. Because famotidine is more potent when administered intrathecally, these findings are also consistent with a primarily central nervous system mechanism of action.

19.
Curr Opin Neurol ; 35(2): 249-257, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35102123

RESUMEN

PURPOSE OF REVIEW: To describe features and implications of chronic systemic inflammation in individuals with spinal cord injury (SCI) and to summarize the growing therapeutic possibilities to explore the vagus nerve-mediated inflammatory reflex in this context. RECENT FINDINGS: The discovery of the inflammatory reflex provides a rationale to explore neuromodulation modalities, that is, electrical vagus nerve stimulation and pharmacological cholinergic modalities to regulate inflammation after SCI. SUMMARY: Inflammation in individuals with SCI may negatively impact functional recovery and medical consequences after SCI. Exploring the potential of the vagus nerve-based inflammatory reflex to restore autonomic regulation and control inflammation may provide a novel approach for functional improvement in SCI.


Asunto(s)
Traumatismos de la Médula Espinal , Humanos , Inflamación/terapia , Recuperación de la Función/fisiología , Reflejo/fisiología , Médula Espinal , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/terapia , Nervio Vago/fisiología
20.
Biosens Bioelectron ; 200: 113886, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34995836

RESUMEN

Novel research in the field of bioelectronic medicine requires neuromodulation systems that pair high-performance neurostimulation and bio-signal acquisition hardware with advanced signal processing and control algorithms. Although mice are the most commonly used animal in medical research, the size, weight, and power requirements of such bioelectronic systems either preclude use in mice or impose significant constraints on experimental design. Here, a fully-implantable recording and stimulation neuromodulation system suitable for use in mice is presented, measuring 2.2 cm3 and weighing 2.8 g. The bidirectional wireless interface allows simultaneous readout of multiple physiological signals and complete control over stimulation parameters, and a wirelessly rechargeable battery provides a lifetime of up to 5 days on a single charge. The device was implanted to deliver vagus nerve stimulation (n = 12 animals) and a functional neural interface (capable of inducing acute bradycardia) was demonstrated with lifetimes exceeding three weeks. The design utilizes only commercially-available electrical components and 3D-printed packaging, with the goal of facilitating widespread adoption and accelerating discovery and translation of future bioelectronic therapeutics.


Asunto(s)
Técnicas Biosensibles , Tecnología Inalámbrica , Animales , Suministros de Energía Eléctrica , Ratones , Prótesis e Implantes , Procesamiento de Señales Asistido por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA