Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Cancer ; 23(1): 56, 2024 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-38491381

RESUMEN

One of the major hurdles that has hindered the success of chimeric antigen receptor (CAR) T cell therapies against solid tumors is on-target off-tumor (OTOT) toxicity due to sharing of the same epitopes on normal tissues. To elevate the safety profile of CAR-T cells, an affinity/avidity fine-tuned CAR was designed enabling CAR-T cell activation only in the presence of a highly expressed tumor associated antigen (TAA) but not when recognizing the same antigen at a physiological level on healthy cells. Using direct stochastic optical reconstruction microscopy (dSTORM) which provides single-molecule resolution, and flow cytometry, we identified high carbonic anhydrase IX (CAIX) density on clear cell renal cell carcinoma (ccRCC) patient samples and low-density expression on healthy bile duct tissues. A Tet-On doxycycline-inducible CAIX expressing cell line was established to mimic various CAIX densities, providing coverage from CAIX-high skrc-59 tumor cells to CAIX-low MMNK-1 cholangiocytes. Assessing the killing of CAR-T cells, we demonstrated that low-affinity/high-avidity fine-tuned G9 CAR-T has a wider therapeutic window compared to high-affinity/high-avidity G250 that was used in the first anti-CAIX CAR-T clinical trial but displayed serious OTOT effects. To assess the therapeutic effect of G9 on patient samples, we generated ccRCC patient derived organotypic tumor spheroid (PDOTS) ex vivo cultures and demonstrated that G9 CAR-T cells exhibited superior efficacy, migration and cytokine release in these miniature tumors. Moreover, in an RCC orthotopic mouse model, G9 CAR-T cells showed enhanced tumor control compared to G250. In summary, G9 has successfully mitigated OTOT side effects and in doing so has made CAIX a druggable immunotherapeutic target.


Asunto(s)
Anhidrasas Carbónicas , Carcinoma de Células Renales , Neoplasias Renales , Receptores Quiméricos de Antígenos , Animales , Ratones , Humanos , Anhidrasa Carbónica IX/genética , Carcinoma de Células Renales/metabolismo , Neoplasias Renales/patología , Receptores Quiméricos de Antígenos/genética , Anhidrasas Carbónicas/metabolismo , Anhidrasas Carbónicas/uso terapéutico , Antígenos de Neoplasias , Anticuerpos , Linfocitos T/metabolismo
2.
Clin Cancer Res ; 30(8): 1669-1684, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38345769

RESUMEN

PURPOSE: ERBB2-amplified colorectal cancer is a distinct molecular subtype with expanding treatments. Implications of concurrent oncogenic RAS/RAF alterations are not known. EXPERIMENTAL DESIGN: Dana-Farber and Foundation Medicine Inc. Colorectal cancer cohorts with genomic profiling were used to identify ERBB2-amplified cases [Dana-Farber, n = 47/2,729 (1.7%); FMI, n = 1857/49,839 (3.7%)]. Outcomes of patients receiving HER2-directed therapies are reported (Dana-Farber, n = 9; Flatiron Health-Foundation Medicine clinicogenomic database, FH-FMI CGDB, n = 38). Multisite HER2 IHC and genomic profiling were performed to understand HER2 intratumoral and interlesional heterogeneity. The impact of concurrent RAS comutations on the effectiveness of HER2-directed therapies were studied in isogenic colorectal cancer cell lines and xenografts. RESULTS: ERBB2 amplifications are enriched in left-sided colorectal cancer. Twenty percent of ERBB2-amplified colorectal cancers have co-occurring oncogenic RAS/RAF alterations. While RAS/RAF WT colorectal cancers typically have clonal ERBB2 amplification, colorectal cancers with co-occurring RAS/RAF alterations have lower level ERRB2 amplification, higher intratumoral heterogeneity, and interlesional ERBB2 discordance. These distinct genomic patterns lead to differential responsiveness and patterns of resistance to HER2-directed therapy. ERBB2-amplified colorectal cancer with RAS/RAF alterations are resistant to trastuzumab-based combinations, such as trastuzumab/tucatinib, but retain sensitivity to trastuzumab deruxtecan in in vitro and murine models. Trastuzumab deruxtecan shows clinical efficacy in cases with high-level ERBB2-amplified RAS/RAF coaltered colorectal cancer. CONCLUSIONS: Co-occurring RAS/RAF alterations define a unique subtype of ERBB2-amplified colorectal cancer that has increased intratumoral heterogeneity, interlesional discordance, and resistance to trastuzumab-based combinations. Further examination of trastuzumab deruxtecan in this previously understudied cohort of ERBB2-amplified colorectal cancer is warranted.


Asunto(s)
Neoplasias Colorrectales , Variaciones en el Número de Copia de ADN , Humanos , Animales , Ratones , Amplificación de Genes , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Receptor ErbB-2/metabolismo , Trastuzumab/farmacología , Trastuzumab/uso terapéutico , Resultado del Tratamiento , Mutación
3.
J Clin Oncol ; 42(9): 1021-1030, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38252908

RESUMEN

PURPOSE: Cemiplimab is approved for treating locally advanced or metastatic cutaneous squamous cell carcinoma (CSCC). Solid organ transplant recipients have been excluded from immunotherapy trials, given concern for allograft rejection despite their increased risk of skin cancers. Chronic immunosuppression is necessary to prevent organ rejection but may attenuate antitumor response with PD-1 inhibitors. METHODS: We report a phase I study of cemiplimab for kidney transplant recipients (KTRs) with advanced CSCC. After cross-taper to a mammalian target of rapamycin (mTOR) inhibitor and pulsed dose corticosteroids (prednisone 40 mg once daily, the day before and on days 1-3 of each cycle, followed by 20 mg once daily on days 4-6, then 10 mg once daily until the day before each subsequent cycle), patients received cemiplimab 350 mg intravenously once every 3 weeks for up to 2 years and were assessed for response every 8 weeks. The primary end point was the rate of kidney rejection, with key secondary end points including rate and duration of response, and survival. RESULTS: Twelve patients were treated. No kidney rejection or loss was observed. A response to cemiplimab was observed in five of 11 evaluable patients (46%; 90% CI, 22 to 73), including two with durable responses beyond a year. Median follow-up was 6.8 months (range, 0.7-29.8). Treatment-related grade 3 or greater adverse events occurred in five patients (42%), including diarrhea, infection, and metabolic disturbances. One patient died of angioedema and anaphylaxis attributed to mTOR inhibitor cross-taper. CONCLUSION: mTOR inhibitor and corticosteroids represent a favorable immunosuppressive regimen for KTRs with advanced CSCC receiving immunotherapy. This combination resulted in durable antitumor responses with no kidney rejection events (funded by Regeneron Pharmaceuticals [ClinicalTrials.gov identifier: NCT04339062]).


Asunto(s)
Anticuerpos Monoclonales Humanizados , Carcinoma de Células Escamosas , Trasplante de Riñón , Neoplasias Cutáneas , Humanos , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patología , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Trasplante de Riñón/efectos adversos , Inhibidores mTOR , Corticoesteroides/uso terapéutico
4.
Cancer Discov ; 14(5): 752-765, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38227896

RESUMEN

A substantial fraction of cancers evade immune detection by silencing Stimulator of Interferon Genes (STING)-Interferon (IFN) signaling. Therapeutic reactivation of this program via STING agonists, epigenetic, or DNA-damaging therapies can restore antitumor immunity in multiple preclinical models. Here we show that adaptive induction of three prime exonuclease 1 (TREX1) restrains STING-dependent nucleic acid sensing in cancer cells via its catalytic function in degrading cytosolic DNA. Cancer cell TREX1 expression is coordinately induced with STING by autocrine IFN and downstream STAT1, preventing signal amplification. TREX1 inactivation in cancer cells thus unleashes STING-IFN signaling, recruiting T and natural killer (NK) cells, sensitizing to NK cell-derived IFNγ, and cooperating with programmed cell death protein 1 blockade in multiple mouse tumor models to enhance immunogenicity. Targeting TREX1 may represent a complementary strategy to induce cytosolic DNA and amplify cancer cell STING-IFN signaling as a means to sensitize tumors to immune checkpoint blockade (ICB) and/or cell therapies. SIGNIFICANCE: STING-IFN signaling in cancer cells promotes tumor cell immunogenicity. Inactivation of the DNA exonuclease TREX1, which is adaptively upregulated to limit pathway activation in cancer cells, recruits immune effector cells and primes NK cell-mediated killing. Targeting TREX1 has substantial therapeutic potential to amplify cancer cell immunogenicity and overcome ICB resistance. This article is featured in Selected Articles from This Issue, p. 695.


Asunto(s)
Exodesoxirribonucleasas , Proteínas de la Membrana , Fosfoproteínas , Transducción de Señal , Exodesoxirribonucleasas/genética , Ratones , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Humanos , Animales , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Neoplasias/inmunología , Neoplasias/genética , Neoplasias/tratamiento farmacológico , Interferones/metabolismo , Línea Celular Tumoral , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo
5.
JAMA Oncol ; 10(1): 32-41, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37971722

RESUMEN

Importance: Proliferative verrucous leukoplakia (PVL) is an aggressive oral precancerous disease characterized by a high risk of transformation to invasive oral squamous cell carcinoma (OSCC), and no therapies have been shown to affect its natural history. A recent study of the PVL immune landscape revealed a cytotoxic T-cell-rich microenvironment, providing strong rationale to investigate immune checkpoint therapy. Objective: To determine the safety and clinical activity of anti-programmed cell death 1 protein (PD-1) therapy to treat high-risk PVL. Design, Setting, and Participants: This nonrandomized, open-label, phase 2 clinical trial was conducted from January 2019 to December 2021 at a single academic medical center; median (range) follow-up was 21.1 (5.4-43.6) months. Participants were a population-based sample of patients with PVL (multifocal, contiguous, or a single lesion ≥4 cm with any degree of dysplasia). Intervention: Patients underwent pretreatment biopsy (1-3 sites) and then received 4 doses of nivolumab (480 mg intravenously) every 28 days, followed by rebiopsy and intraoral photographs at each visit. Main Outcomes and Measures: The primary end point was the change in composite score (size and degree of dysplasia) from before to after treatment (major response [MR]: >80% decrease in score; partial response: 40%-80% decrease). Secondary analyses included immune-related adverse events, cancer-free survival (CFS), PD-1 ligand 1 (PD-L1) expression, 9p21.3 deletion, and other exploratory immunologic and genomic associations of response. Results: A total of 33 patients were enrolled (median [range] age, 63 [32-80] years; 18 [55%] were female), including 8 (24%) with previously resected early-stage OSCC. Twelve patients (36%) (95% CI, 20.4%-54.8%) had a response by composite score (3 MRs [9%]), 4 had progressive disease (>10% composite score increase, or cancer). Nine patients (27%) developed OSCC during the trial, with a 2-year CFS of 73% (95% CI, 53%-86%). Two patients (6%) discontinued because of toxic effects; 7 (21%) experienced grade 3 to 4 immune-related adverse events. PD-L1 combined positive scores were not associated with response or CFS. Of 20 whole-exome sequenced patients, all 6 patients who had progression to OSCC after nivolumab treatment exhibited 9p21.3 somatic copy-number loss on pretreatment biopsy, while only 4 of the 14 patients (29%) who did not develop OSCC had 9p21.3 loss. Conclusions and Relevance: This immune checkpoint therapy precancer nonrandomized clinical trial met its prespecified response end point, suggesting potential clinical activity for nivolumab in high-risk PVL. Findings identified immunogenomic associations to inform future trials in this precancerous disease with unmet medical need that has been difficult to study. Trial Registration: ClinicalTrials.gov Identifier: NCT03692325.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de la Boca , Lesiones Precancerosas , Humanos , Femenino , Persona de Mediana Edad , Masculino , Nivolumab/efectos adversos , Nivolumab/administración & dosificación , Carcinoma de Células Escamosas/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/inmunología , Antígeno B7-H1 , Neoplasias de la Boca/tratamiento farmacológico , Inmunoterapia , Leucoplasia Bucal/tratamiento farmacológico , Leucoplasia Bucal/inducido químicamente , Microambiente Tumoral
6.
Gut ; 73(4): 639-648, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38123998

RESUMEN

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) is commonly diagnosed at an advanced stage. Liquid biopsy approaches may facilitate detection of early stage PDAC when curative treatments can be employed. DESIGN: To assess circulating marker discrimination in training, testing and validation patient cohorts (total n=426 patients), plasma markers were measured among PDAC cases and patients with chronic pancreatitis, colorectal cancer (CRC), and healthy controls. Using CA19-9 as an anchor marker, measurements were made of two protein markers (TIMP1, LRG1) and cell-free DNA (cfDNA) pancreas-specific methylation at 9 loci encompassing 61 CpG sites. RESULTS: Comparative methylome analysis identified nine loci that were differentially methylated in exocrine pancreas DNA. In the training set (n=124 patients), cfDNA methylation markers distinguished PDAC from healthy and CRC controls. In the testing set of 86 early stage PDAC and 86 matched healthy controls, CA19-9 had an area under the receiver operating characteristic curve (AUC) of 0.88 (95% CI 0.83 to 0.94), which was increased by adding TIMP1 (AUC 0.92; 95% CI 0.88 to 0.96; p=0.06), LRG1 (AUC 0.92; 95% CI 0.88 to 0.96; p=0.02) or exocrine pancreas-specific cfDNA methylation markers at nine loci (AUC 0.92; 95% CI 0.88 to 0.96; p=0.02). In the validation set of 40 early stage PDAC and 40 matched healthy controls, a combined panel including CA19-9, TIMP1 and a 9-loci cfDNA methylation panel had greater discrimination (AUC 0.86, 95% CI 0.77 to 0.95) than CA19-9 alone (AUC 0.82; 95% CI 0.72 to 0.92). CONCLUSION: A combined panel of circulating markers including proteins and methylated cfDNA increased discrimination compared with CA19-9 alone for early stage PDAC.


Asunto(s)
Adenocarcinoma , Carcinoma Ductal Pancreático , Ácidos Nucleicos Libres de Células , Neoplasias Pancreáticas , Humanos , Antígeno CA-19-9 , Biomarcadores de Tumor , Ácidos Nucleicos Libres de Células/metabolismo , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Páncreas/patología , Adenocarcinoma/diagnóstico , Adenocarcinoma/genética , Adenocarcinoma/patología , Metilación de ADN
7.
J Thorac Oncol ; 19(5): 732-748, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38154514

RESUMEN

INTRODUCTION: ERBB2 amplification in lung cancer remains poorly characterized. HER2 (encoded by ERBB2) is a transmembrane tyrosine kinase capable of ligand-independent dimerization and signaling when overexpressed, and a common cause of HER2 overexpression is ERBB2 amplification. Here, we evaluated the clinicopathologic and genomic characteristics of ERBB2-amplified NSCLC and explored a HER2 antibody-drug conjugate (ADC) therapeutic strategy. METHODS: Our institutional next-generation DNA sequencing data (OncoPanel) from 5769 NSCLC samples (5075 patients) were queried for cases having high-level ERBB2 amplification (≥6 copies). Clinical and demographic characteristics were extracted from the electronic medical records. Efficacy of the pan-ERBB inhibitor afatinib or HER2 ADCs (trastuzumab deruxtecan and trastuzumab emtansine) was evaluated in NSCLC preclinical models and patients with ERBB2 amplification. RESULTS: High-level ERBB2 amplification was identified in 0.9% of lung adenocarcinomas and reliably predicted overexpression of HER2. ERBB2 amplification events are detected in two distinct clinicopathologic and genomic subsets of NSCLC: as the sole mitogenic driver in tumors arising in patients with a smoking history or as a concomitant alteration with other mitogenic drivers in patients with a light or never smoking history. We further reveal that trastuzumab deruxtecan is effective therapy in in vitro and in vivo preclinical models of NSCLC harboring ERBB2 amplification and report two cases of clinical activity of an anti-HER2 ADC in patients who acquired ERBB2 amplification after previous targeted therapy. CONCLUSIONS: High-level ERBB2 amplification reliably predicts HER2 overexpression in patients with NSCLC, and HER2 ADC is effective therapy in this population.


Asunto(s)
Camptotecina/análogos & derivados , Carcinoma de Pulmón de Células no Pequeñas , Amplificación de Genes , Neoplasias Pulmonares , Receptor ErbB-2 , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Femenino , Masculino , Persona de Mediana Edad , Animales , Inmunoconjugados/uso terapéutico , Inmunoconjugados/farmacología , Anciano , Ratones , Trastuzumab/uso terapéutico , Trastuzumab/farmacología , Prevalencia , Afatinib/uso terapéutico , Afatinib/farmacología , Ado-Trastuzumab Emtansina/uso terapéutico , Ado-Trastuzumab Emtansina/farmacología
8.
Sci Immunol ; 8(87): eadf4968, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37683037

RESUMEN

About 50% of patients with locally advanced head and neck squamous cell carcinoma (HNSCC) experience recurrences after definitive therapy. The presurgical administration of anti-programmed cell death protein 1 (PD-1) immunotherapy results in substantial pathologic tumor responses (pTR) within the tumor microenvironment (TME). However, the mechanisms underlying the dynamics of antitumor T cells upon neoadjuvant PD-1 blockade remain unresolved, and approaches to increase pathologic responses are lacking. In a phase 2 trial (NCT02296684), we observed that 45% of patients treated with two doses of neoadjuvant pembrolizumab experienced marked pTRs (≥50%). Single-cell analysis of 17,158 CD8+ T cells from 14 tumor biopsies, including 6 matched pre-post neoadjuvant treatment, revealed that responding tumors had clonally expanded putative tumor-specific exhausted CD8+ tumor-infiltrating lymphocytes (TILs) with a tissue-resident memory program, characterized by high cytotoxic potential (CTX+) and ZNF683 expression, within the baseline TME. Pathologic responses after 5 weeks of PD-1 blockade were consistent with activation of preexisting CTX+ZNF683+CD8+ TILs, paralleling loss of viable tumor and associated tumor antigens. Response was associated with high numbers of CD103+PD-1+CD8+ T cells infiltrating pretreatment lesions, whereas revival of nonexhausted persisting clones and clonal replacement were modest. By contrast, nonresponder baseline TME exhibited a relative absence of ZNF683+CTX+ TILs and subsequent accumulation of highly exhausted clones. In HNSCC, revival of preexisting ZNF683+CTX+ TILs is a major mechanism of response in the immediate postneoadjuvant setting.


Asunto(s)
Antineoplásicos , Neoplasias de Cabeza y Cuello , Humanos , Terapia Neoadyuvante , Linfocitos T CD8-positivos , Carcinoma de Células Escamosas de Cabeza y Cuello , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Microambiente Tumoral
9.
Arch Pathol Lab Med ; 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37639432

RESUMEN

CONTEXT.­: Droplet digital polymerase chain reaction (ddPCR) is a sensitive method to detect common pathogenic EGFR mutations in non-small cell lung cancer. Although targeted assays have not been specifically designed to detect them, uncommon EGFR mutations have been linked to response to targeted therapy. OBJECTIVE.­: To describe atypical ddPCR patterns that correspond to uncommon but clinically actionable EGFR mutations. DESIGN.­: A cohort of 1134 consecutive non-small cell lung cancers that underwent targeted next-generation sequencing was reviewed. Uncommon EGFR mutations involving probe binding sites were evaluated by ddPCR. RESULTS.­: Two hundred fifty-five of 1134 cancers (22.5%) harbored pathogenic EGFR mutations. One hundred eighty-six of 255 (72.9%) had canonical EGFR exon 19 deletion or exon 21 p.L858R variants designed for detection by ddPCR. An additional 25 of 255 cases (9.8%) had uncommon EGFR mutations within the probe-binding site, including one case with concurrent uncommon mutations in both exon 19 and exon 21. These mutations included uncommon EGFR exon 19 deletions (n = 6), EGFR exon 19 substitutions p.L747P (n = 3) and p.L747A (n = 1), dinucleotide substitutions leading to EGFR p.L858R (n = 5), EGFR exon 21 substitutions p.K860I (n = 1) and p.L861Q (n = 9), and EGFR p.[L858R;K860I] (n = 1). Droplet digital polymerase chain reaction generated atypical but reproducible signal for each of these uncommon variants. CONCLUSIONS.­: Droplet digital polymerase chain reaction analysis of uncommon pathogenic EGFR variants can yield unique and reproducible results. Recognition of atypical patterns in EGFR ddPCR testing can prompt confirmatory molecular testing and aid appropriate targeted therapy selection for patients with non-small cell lung cancer.

10.
J Clin Invest ; 133(16)2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37384411

RESUMEN

Despite the success of KRAS G12C inhibitors in non-small cell lung cancer (NSCLC), more effective treatments are needed. One preclinical strategy has been to cotarget RAS and mTOR pathways; however, toxicity due to broad mTOR inhibition has limited its utility. Therefore, we sought to develop a more refined means of targeting cap-dependent translation and identifying the most therapeutically important eukaryotic initiation factor 4F complex-translated (eIF4F-translated) targets. Here, we show that an eIF4A inhibitor, which targets a component of eIF4F, dramatically enhances the effects of KRAS G12C inhibitors in NSCLCs and together these agents induce potent tumor regression in vivo. By screening a broad panel of eIF4F targets, we show that this cooperativity is driven by effects on BCL-2 family proteins. Moreover, because multiple BCL-2 family members are concomitantly suppressed, these agents are broadly efficacious in NSCLCs, irrespective of their dependency on MCL1, BCL-xL, or BCL-2, which is known to be heterogeneous. Finally, we show that MYC overexpression confers sensitivity to this combination because it creates a dependency on eIF4A for BCL-2 family protein expression. Together, these studies identify a promising therapeutic strategy for KRAS-mutant NSCLCs, demonstrate that BCL-2 proteins are the key mediators of the therapeutic response in this tumor type, and uncover a predictive biomarker of sensitivity.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Factor 4F Eucariótico de Iniciación/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Línea Celular Tumoral , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2 , Mutación
11.
Clin Cancer Res ; 29(16): 3074-3080, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37279096

RESUMEN

PURPOSE: Non-invasive monitoring of circulating tumor DNA (ctDNA) has the potential to be a readily available measure for early prediction of clinical response. Here, we report on early ctDNA changes of KRAS G12C in a Phase 2 trial of adagrasib in patients with advanced, KRAS G12C-mutant lung cancer. EXPERIMENTAL DESIGN: We performed serial droplet digital PCR (ddPCR) and plasma NGS on 60 KRAS G12C-mutant patients with lung cancer that participated in cohort A of the KRYSTAL-1 clinical trial. We analyzed the change in ctDNA at 2 specific intervals: Between cycles 1 and 2 and at cycle 4. Changes in ctDNA were compared with clinical and radiographic response. RESULTS: We found that, in general, a maximal response in KRAS G12C ctDNA levels could be observed during the initial approximately 3-week treatment period, well before the first scan at approximately 6 weeks. 35 patients (89.7%) exhibited a decrease in KRAS G12C cfDNA >90% and 33 patients (84.6%) achieved complete clearance by cycle 2. Patients with complete ctDNA clearance at cycle 2 showed an improved objective response rate (ORR) compared with patients with incomplete ctDNA clearance (60.6% vs. 33.3%). Furthermore, complete ctDNA clearance at cycle 4 was associated with an improved overall survival (14.7 vs. 5.4 months) and progression-free survival (HR, 0.3). CONCLUSIONS: These results support using early plasma response of KRAS G12C assessed at approximately 3 weeks to anticipate the likelihood of a favorable objective clinical response.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Pirimidinas/uso terapéutico , Mutación
12.
Blood ; 142(5): 421-433, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37146250

RESUMEN

Although BCL2 mutations are reported as later occurring events leading to venetoclax resistance, many other mechanisms of progression have been reported though remain poorly understood. Here, we analyze longitudinal tumor samples from 11 patients with disease progression while receiving venetoclax to characterize the clonal evolution of resistance. All patients tested showed increased in vitro resistance to venetoclax at the posttreatment time point. We found the previously described acquired BCL2-G101V mutation in only 4 of 11 patients, with 2 patients showing a very low variant allele fraction (0.03%-4.68%). Whole-exome sequencing revealed acquired loss(8p) in 4 of 11 patients, of which 2 patients also had gain (1q21.2-21.3) in the same cells affecting the MCL1 gene. In vitro experiments showed that CLL cells from the 4 patients with loss(8p) were more resistant to venetoclax than cells from those without it, with the cells from 2 patients also carrying gain (1q21.2-21.3) showing increased sensitivity to MCL1 inhibition. Progression samples with gain (1q21.2-21.3) were more susceptible to the combination of MCL1 inhibitor and venetoclax. Differential gene expression analysis comparing bulk RNA sequencing data from pretreatment and progression time points of all patients showed upregulation of proliferation, B-cell receptor (BCR), and NF-κB gene sets including MAPK genes. Cells from progression time points demonstrated upregulation of surface immunoglobulin M and higher pERK levels compared with those from the preprogression time point, suggesting an upregulation of BCR signaling that activates the MAPK pathway. Overall, our data suggest several mechanisms of acquired resistance to venetoclax in CLL that could pave the way for rationally designed combination treatments for patients with venetoclax-resistant CLL.


Asunto(s)
Antineoplásicos , Leucemia Linfocítica Crónica de Células B , Humanos , Antineoplásicos/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Resistencia a Antineoplásicos/genética , Secuenciación del Exoma , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/patología , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteínas Proto-Oncogénicas c-bcl-2
13.
Nature ; 615(7950): 158-167, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36634707

RESUMEN

Despite the success of PD-1 blockade in melanoma and other cancers, effective treatment strategies to overcome resistance to cancer immunotherapy are lacking1,2. Here we identify the innate immune kinase TANK-binding kinase 1 (TBK1)3 as a candidate immune-evasion gene in a pooled genetic screen4. Using a suite of genetic and pharmacological tools across multiple experimental model systems, we confirm a role for TBK1 as an immune-evasion gene. Targeting TBK1 enhances responses to PD-1 blockade by decreasing the cytotoxicity threshold to effector cytokines (TNF and IFNγ). TBK1 inhibition in combination with PD-1 blockade also demonstrated efficacy using patient-derived tumour models, with concordant findings in matched patient-derived organotypic tumour spheroids and matched patient-derived organoids. Tumour cells lacking TBK1 are primed to undergo RIPK- and caspase-dependent cell death in response to TNF and IFNγ in a JAK-STAT-dependent manner. Taken together, our results demonstrate that targeting TBK1 is an effective strategy to overcome resistance to cancer immunotherapy.


Asunto(s)
Resistencia a Antineoplásicos , Evasión Inmune , Inmunoterapia , Proteínas Serina-Treonina Quinasas , Humanos , Evasión Inmune/genética , Evasión Inmune/inmunología , Inmunoterapia/métodos , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Organoides , Factores de Necrosis Tumoral/inmunología , Interferón gamma/inmunología , Esferoides Celulares , Caspasas , Quinasas Janus , Factores de Transcripción STAT
14.
N Engl J Med ; 388(1): 44-54, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36546659

RESUMEN

BACKGROUND: Adagrasib, an oral small-molecule inhibitor of mutant KRAS G12C protein, has shown clinical activity in pretreated patients with several tumor types, including colorectal cancer. Preclinical studies suggest that combining a KRAS G12C inhibitor with an epidermal growth factor receptor antibody could be an effective clinical strategy. METHODS: In this phase 1-2, open-label, nonrandomized clinical trial, we assigned heavily pretreated patients with metastatic colorectal cancer with mutant KRAS G12C to receive adagrasib monotherapy (600 mg orally twice daily) or adagrasib (at the same dose) in combination with intravenous cetuximab once a week (with an initial loading dose of 400 mg per square meter of body-surface area, followed by a dose of 250 mg per square meter) or every 2 weeks (with a dose of 500 mg per square meter). The primary end points were objective response (complete or partial response) and safety. RESULTS: As of June 16, 2022, a total of 44 patients had received adagrasib, and 32 had received combination therapy with adagrasib and cetuximab, with a median follow-up of 20.1 months and 17.5 months, respectively. In the monotherapy group (43 evaluable patients), a response was reported in 19% of the patients (95% confidence interval [CI], 8 to 33). The median response duration was 4.3 months (95% CI, 2.3 to 8.3), and the median progression-free survival was 5.6 months (95% CI, 4.1 to 8.3). In the combination-therapy group (28 evaluable patients), the response was 46% (95% CI, 28 to 66). The median response duration was 7.6 months (95% CI, 5.7 to not estimable), and the median progression-free survival was 6.9 months (95% CI, 5.4 to 8.1). The percentage of grade 3 or 4 treatment-related adverse events was 34% in the monotherapy group and 16% in the combination-therapy group. No grade 5 adverse events were observed. CONCLUSIONS: Adagrasib had antitumor activity in heavily pretreated patients with metastatic colorectal cancer with mutant KRAS G12C, both as oral monotherapy and in combination with cetuximab. The median response duration was more than 6 months in the combination-therapy group. Reversible adverse events were common in the two groups. (Funded by Mirati Therapeutics; KRYSTAL-1 ClinicalTrials.gov number, NCT03785249.).


Asunto(s)
Antineoplásicos , Cetuximab , Neoplasias Colorrectales , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Cetuximab/administración & dosificación , Cetuximab/efectos adversos , Cetuximab/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/secundario , Piperazinas/uso terapéutico , Proteínas Proto-Oncogénicas p21(ras)/genética , Antineoplásicos/administración & dosificación , Antineoplásicos/uso terapéutico
15.
Cancer Cell ; 40(10): 1128-1144.e8, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36150391

RESUMEN

KRAS-LKB1 (KL) mutant lung cancers silence STING owing to intrinsic mitochondrial dysfunction, resulting in T cell exclusion and resistance to programmed cell death (ligand) 1 (PD-[L]1) blockade. Here we discover that KL cells also minimize intracellular accumulation of 2'3'-cyclic GMP-AMP (2'3'-cGAMP) to further avoid downstream STING and STAT1 activation. An unbiased screen to co-opt this vulnerability reveals that transient MPS1 inhibition (MPS1i) potently re-engages this pathway in KL cells via micronuclei generation. This effect is markedly amplified by epigenetic de-repression of STING and only requires pulse MPS1i treatment, creating a therapeutic window compared with non-dividing cells. A single course of decitabine treatment followed by pulse MPS1i therapy restores T cell infiltration in vivo, enhances anti-PD-1 efficacy, and results in a durable response without evidence of significant toxicity.


Asunto(s)
Neoplasias Pulmonares , Proteínas Proto-Oncogénicas p21(ras) , Decitabina , Genes ras , Humanos , Ligandos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
16.
Cancer Res ; 82(21): 4079-4092, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-36066413

RESUMEN

Immunotherapy has shown limited efficacy in patients with EGFR-mutated lung cancer. Efforts to enhance the immunogenicity of EGFR-mutated lung cancer have been unsuccessful to date. Here, we discover that MET amplification, the most common mechanism of resistance to third-generation EGFR tyrosine kinase inhibitors (TKI), activates tumor cell STING, an emerging determinant of cancer immunogenicity (1). However, STING activation was restrained by ectonucleosidase CD73, which is induced in MET-amplified, EGFR-TKI-resistant cells. Systematic genomic analyses and cell line studies confirmed upregulation of CD73 in MET-amplified and MET-activated lung cancer contexts, which depends on coinduction of FOSL1. Pemetrexed (PEM), which is commonly used following EGFR-TKI treatment failure, was identified as an effective potentiator of STING-dependent TBK1-IRF3-STAT1 signaling in MET-amplified, EGFR-TKI-resistant cells. However, PEM treatment also induced adenosine production, which inhibited T-cell responsiveness. In an allogenic humanized mouse model, CD73 deletion enhanced immunogenicity of MET-amplified, EGFR-TKI-resistant cells, and PEM treatment promoted robust responses regardless of CD73 status. Using a physiologic antigen recognition model, inactivation of CD73 significantly increased antigen-specific CD8+ T-cell immunogenicity following PEM treatment. These data reveal that combined PEM and CD73 inhibition can co-opt tumor cell STING induction in TKI-resistant EGFR-mutated lung cancers and promote immunogenicity. SIGNIFICANCE: MET amplification upregulates CD73 to suppress tumor cell STING induction and T-cell responsiveness in TKI-resistant, EGFR-mutated lung cancer, identifying a strategy to enhance immunogenicity and improve treatment.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Resistencia a Antineoplásicos/genética , Receptores ErbB/metabolismo , Amplificación de Genes , Neoplasias Pulmonares/patología , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-met/metabolismo , 5'-Nucleotidasa/metabolismo
17.
Cancer Immunol Res ; 10(8): 947-961, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35678717

RESUMEN

Activation of the stimulator of interferon genes (STING) pathway promotes antitumor immunity but STING agonists have yet to achieve clinical success. Increased understanding of the mechanism of action of STING agonists in human tumors is key to developing therapeutic combinations that activate effective innate antitumor immunity. Here, we report that malignant pleural mesothelioma cells robustly express STING and are responsive to STING agonist treatment ex vivo. Using dynamic single-cell RNA sequencing of explants treated with a STING agonist, we observed CXCR3 chemokine activation primarily in tumor cells and cancer-associated fibroblasts, as well as T-cell cytotoxicity. In contrast, primary natural killer (NK) cells resisted STING agonist-induced cytotoxicity. STING agonists enhanced migration and killing of NK cells and mesothelin-targeted chimeric antigen receptor (CAR)-NK cells, improving therapeutic activity in patient-derived organotypic tumor spheroids. These studies reveal the fundamental importance of using human tumor samples to assess innate and cellular immune therapies. By functionally profiling mesothelioma tumor explants with elevated STING expression in tumor cells, we uncovered distinct consequences of STING agonist treatment in humans that support testing combining STING agonists with NK and CAR-NK cell therapies.


Asunto(s)
Inmunoterapia Adoptiva , Células Asesinas Naturales , Proteínas de la Membrana , Mesotelioma Maligno , Línea Celular Tumoral , Tratamiento Basado en Trasplante de Células y Tejidos , Humanos , Proteínas de la Membrana/agonistas , Receptores Quiméricos de Antígenos
18.
PLoS One ; 17(2): e0264201, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35202431

RESUMEN

Activating mutations in EGFR predict benefit from tyrosine kinase inhibitor therapy for patients with advanced non-small cell lung cancer. Directing patients to appropriate therapy depends on accurate and timely EGFR assessment in the molecular pathology laboratory. This article describes the analytical design, performance characteristics, and clinical implementation of an assay for the rapid detection of EGFR L858R and exon 19 deletion mutations. A droplet digital polymerase chain reaction (ddPCR) assay was implemented with probe hydrolysis-dependent signal detection. A mutation-specific probe was used to detect EGFR L858R. A loss of signal design was used to detect EGFR exon 19 deletion mutations. Analytical sensitivity was dependent on DNA input and was as low as 0.01% variant allele fraction for the EGFR L858R assay and 0.1% variant allele fraction for the EGFR exon 19 deletion assay. Correlation of 20 clinical specimens tested by ddPCR and next generation sequencing showed 100% concordance. ddPCR showed 53% clinical sensitivity in the detection of EGFR mutations in plasma cell-free DNA from patients with lung cancer. The median clinical turnaround time was 5 days for ddPCR compared to 13 days for next generation sequencing. The findings show that ddPCR is an accurate and rapid method for detecting EGFR mutations in patients with non-small cell lung cancer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Análisis Mutacional de ADN/métodos , Neoplasias Pulmonares/genética , Reacción en Cadena de la Polimerasa/métodos , Receptores ErbB/genética , Humanos , Mutación , Sensibilidad y Especificidad
19.
Clin Cancer Res ; 28(3): 468-478, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34667025

RESUMEN

PURPOSE: Surgery often represents the best chance for disease control in locoregionally recurrent squamous cell carcinoma of the head and neck (SCCHN). We investigated dual immune-checkpoint inhibition [anti-PD-1, nivolumab (N), and anti-KIR, lirilumab (L)] before and after salvage surgery to improve disease-free survival (DFS). PATIENTS AND METHODS: In this phase II study, patients received N (240 mg) + L (240 mg) 7 to 21 days before surgery, followed by six cycles of adjuvant N + L. Primary endpoint was 1-year DFS; secondary endpoints were safety, pre-op radiologic response, and overall survival (OS). Correlatives included tumor sequencing, PD-L1 scoring, and immunoprofiling. RESULTS: Among 28 patients, the median age was 66, 86% were smokers; primary site: 9 oral cavity, 9 oropharynx, and 10 larynx/hypopharynx; 96% had prior radiation. There were no delays to surgery. Grade 3+ adverse events: 11%. At the time of surgery, 96% had stable disease radiologically, one had progression. Pathologic response to N + L was observed in 43% (12/28): 4/28 (14%) major (tumor viability, TV ≤ 10%) and 8/28 (29%) partial (TV ≤ 50%). PD-L1 combined positive score (CPS) at surgery was similar regardless of pathologic response (P = 0.71). Thirteen (46%) recurred (loco-regional = 10, distant = 3). Five of 28 (18%) had positive margins, 4 later recurred. At median follow-up of 22.8 months, 1-year DFS was 55.2% (95% CI, 34.8-71.7) and 1-year OS was 85.7% (95% CI, 66.3-94.4). Two-year DFS and OS were 64% and 80% among pathologic responders. CONCLUSIONS: (Neo)adjuvant N + L was well tolerated, with a 43% pathologic response rate. We observed favorable DFS and excellent 2-year OS among high-risk, previously treated patients exhibiting a pathologic response. Further evaluation of this strategy is warranted.See related commentary by Sacco and Cohen, p. 435.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias de Cabeza y Cuello , Inhibidores de Puntos de Control Inmunológico , Terapia Neoadyuvante , Recurrencia Local de Neoplasia , Nivolumab , Carcinoma de Células Escamosas de Cabeza y Cuello , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Supervivencia sin Enfermedad , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/mortalidad , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/cirugía , Inhibidores de Puntos de Control Inmunológico/administración & dosificación , Recurrencia Local de Neoplasia/tratamiento farmacológico , Nivolumab/administración & dosificación , Terapia Recuperativa , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/mortalidad , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/cirugía , Resultado del Tratamiento
20.
Cancer Res ; 82(1): 130-141, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34548332

RESUMEN

Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKI) are the standard-of-care treatment for EGFR-mutant non-small cell lung cancers (NSCLC). However, most patients develop acquired drug resistance to EGFR TKIs. HER3 is a unique pseudokinase member of the ERBB family that functions by dimerizing with other ERBB family members (EGFR and HER2) and is frequently overexpressed in EGFR-mutant NSCLC. Although EGFR TKI resistance mechanisms do not lead to alterations in HER3, we hypothesized that targeting HER3 might improve efficacy of EGFR TKI. HER3-DXd is an antibody-drug conjugate (ADC) comprised of HER3-targeting antibody linked to a topoisomerase I inhibitor currently in clinical development. In this study, we evaluated the efficacy of HER3-DXd across a series of EGFR inhibitor-resistant, patient-derived xenografts and observed it to be broadly effective in HER3-expressing cancers. We further developed a preclinical strategy to enhance the efficacy of HER3-DXd through osimertinib pretreatment, which increased membrane expression of HER3 and led to enhanced internalization and efficacy of HER3-DXd. The combination of osimertinib and HER3-DXd may be an effective treatment approach and should be evaluated in future clinical trials in EGFR-mutant NSCLC patients. SIGNIFICANCE: EGFR inhibition leads to increased HER3 membrane expression and promotes HER3-DXd ADC internalization and efficacy, supporting the clinical development of the EGFR inhibitor/HER3-DXd combination in EGFR-mutant lung cancer.See related commentary by Lim et al., p. 18.


Asunto(s)
Antineoplásicos/uso terapéutico , Receptores ErbB/antagonistas & inhibidores , Inmunoconjugados/metabolismo , Receptor ErbB-3/metabolismo , Animales , Antineoplásicos/farmacología , Apoptosis , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA