Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PNAS Nexus ; 2(4): pgad101, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37091543

RESUMEN

The greatest risk factor for cognitive decline is aging. The biological mechanisms for this decline remain enigmatic due, in part, to the confounding of normal aging mechanisms and those that contribute to cognitive impairment. Importantly, many individuals exhibit impaired cognition in age, while some retain functionality despite their age. Here, we establish a behavioral testing paradigm to characterize age-related cognitive heterogeneity in inbred aged C57BL/6 mice and reliably separate animals into cognitively "intact" (resilient) and "impaired" subgroups using a high-resolution home-cage testing paradigm for spatial discrimination. RNA sequencing and subsequent pathway analyses of cognitively stratified mice revealed molecular signatures unique to cognitively impaired animals, including transcriptional down-regulation of genes involved in mitochondrial oxidative phosphorylation (OXPHOS) and sirtuin (Sirt1 and Sirt3) expression in the hippocampus. Mitochondrial function assessed using high-resolution respirometry indicated a reduced OXPHOS coupling efficiency in cognitively impaired animals with subsequent hippocampal analyses revealing an increase in the oxidative damage marker (3-nitrotyrosine) and an up-regulation of antioxidant enzymes (Sod2, Sod1, Prdx6, etc.). Aged-impaired animals also showed increased levels of IL-6 and TNF-α gene expression in the hippocampus and increased serum levels of proinflammatory cytokines, including IL-6. These results provide critical insight into the diversity of brain aging in inbred animals and reveal the unique mechanisms that separate cognitive resilience from cognitive impairment. Our data indicate the importance of cognitive stratification of aging animals to delineate the mechanisms underlying cognitive impairment and test the efficacy of therapeutic interventions.

2.
Nat Plants ; 7(11): 1461-1474, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34750500

RESUMEN

In mammals and plants, cytosine DNA methylation is essential for the epigenetic repression of transposable elements and foreign DNA. In plants, DNA methylation is guided by small interfering RNAs (siRNAs) in a self-reinforcing cycle termed RNA-directed DNA methylation (RdDM). RdDM requires the specialized RNA polymerase V (Pol V), and the key unanswered question is how Pol V is first recruited to new target sites without pre-existing DNA methylation. We find that Pol V follows and is dependent on the recruitment of an AGO4-clade ARGONAUTE protein, and any siRNA can guide the ARGONAUTE protein to the new target locus independent of pre-existing DNA methylation. These findings reject long-standing models of RdDM initiation and instead demonstrate that siRNA-guided ARGONAUTE targeting is necessary, sufficient and first to target Pol V recruitment and trigger the cycle of RdDM at a transcribed target locus, thereby establishing epigenetic silencing.


Asunto(s)
Proteínas Argonautas , Metilación de ADN , ARN Polimerasas Dirigidas por ADN , Arabidopsis , Proteínas Argonautas/genética , Elementos Transponibles de ADN/genética , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Interferente Pequeño/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA