Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Biomacromolecules ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39148453

RESUMEN

Eco-friendly materials like carbohydrate-based polymers are important for a sustainable future. Starch is particularly promising because of its biodegradability and abundance but its processing to thermoplastic starch requires optimization. Here we developed thermoplastic maize starch materials based on three manufacturing protocols, namely: (1) starch/glycerol manual mixing and extrusion, (2) starch/glycerol manual mixing, extrusion, and kneading, (3) starch/glycerol/water manual mixing and kneading. The physical properties were investigated by differential scanning calorimetry, thermogravimetric analysis, and broadband dielectric spectroscopy. As expected from a partially miscible blend, the dielectric spectra revealed two distinct α-relaxations for the glycerol-rich and the starch-rich phases, respectively. By employing kneading after extrusion, the miscibility between the two phases was found to improve based on thermal and dielectric methods. Moreover, the addition of water during the premixing stage was observed to facilitate phase separation between starch and glycerol, with the α-relaxation dynamics of the latter being comparable to pure glycerol.

2.
Materials (Basel) ; 17(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38591383

RESUMEN

Poly(butylene adipate-co-terephthalate) (PBAT) is widely used for production of biodegradable films due to its high elongation, excellent flexibility, and good processability properties. An effective way to develop more accessible PBAT-based bioplastics for wide application in packaging is blending of PBAT with thermoplastic starch (TPS) since PBAT is costly with prices approximately double or even triple the prices of traditional plastics like polyethylene. This study is focused on investigating the influence of TPS/PBAT blend ratio and montmorillonite (MMT) content on the physical and mechanical properties and molecular mobility of TPS-MMT/PBAT nanocomposites. Obtained TPS-MMT/PBAT nanocomposites through the melt blending process were characterized using tensile testing, dynamic mechanical thermal analysis (DMTA), and X-ray diffraction (XRD), as well as solid-state 1H and 13C NMR spectroscopy. Mechanical properties demonstrated that the addition of TPS to PBAT leads to a substantial decrease in the tensile strength as well as in the elongation at break, while Young's modulus is rising substantially, while the effect of the MMT addition is almost negligible on the tensile stress of the blends. DMTA results confirmed the formation of TPS domains in the PBAT matrix. With increasing TPS content, mobility of starch-rich regions of TPS domains slightly increases. However, molecular mobility in glycerol-rich regions of TPS domains in the blends was slightly restricted. Moreover, the data obtained from 13C CP/MAS NMR spectra indicated that the presence of TPS in the sample decreases the mobility of the PBAT chains, mainly those located at the TPS/PBAT interfaces.

3.
Materials (Basel) ; 17(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38203924

RESUMEN

This study compares the effect of sulfur and dicumyl peroxide (DCP) vulcanizing systems on the physical and mechanical properties of rubber compounds based on acrylonitrile butadiene rubber (NBR). NBR compounds cured by different amounts of DCP and NBR vulcanizates filled with various concentrations of carbon black (CB) and a constant amount of sulfur or DCP were prepared. The vulcanizates were characterized by tensile testing, dynamic mechanical thermal analysis (DMTA), and cross-link density determination. The tensile strength and Young's modulus were found to increase with the rising amount of DCP and CB, while elongation at break decreased. The samples vulcanized by the sulfur system and filled with CB show a substantial increase in tensile strength from 13.1 to 21.2 MPa. Higher storage modulus and glass transition temperature were observed with the increase in the amount of peroxide and filler, and consequently, the increase in cross-link density, indicating rigidity increase and lower molecular mobility. The changes in the physical and mechanical properties of the NBR vulcanizates were in correlation with the changes in solvent uptake and cross-link density.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA