Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(6)2022 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-35328831

RESUMEN

In recent decades, the demand for biomedical imaging tools has grown very rapidly as a key feature for biomedical research and diagnostic applications. Particularly, fluorescence imaging has gained increased attention as a non-invasive, inexpensive technique that allows real-time imaging. However, tissue auto-fluorescence under external illumination, together with a weak tissue penetration of low wavelength excitation light, largely restricts the application of the technique. Accordingly, new types of fluorescent labels are currently being investigated and, in this search, phosphorescent nanoparticles promise great potential, as they combine the interesting size-dependent properties of nanoscale materials with a long-lasting phosphorescence-type emission that allows optical imaging well after excitation (so avoiding autofluorescence). In this work, core-shell structures consisting of SrAlO:Eu,Dy luminescent cores encapsulated within a biocompatible silica shell were prepared, showing a green persistent phosphorescence with an afterglow time of more than 1000 s. A high-energy ball milling procedure was used to reduce the size of the starting phosphors to a size suitable for cellular uptake, while the silica coating was produced by a reverse micelle methodology that eventually allows the excitation and emission light to pass efficiently through the shell. Confocal fluorescence microscopy using HeLa cancer cells confirmed the potential of the all-ceramic composites produced as feasible labels for in vitro optical imaging.


Asunto(s)
Metales de Tierras Raras , Nanopartículas , Humanos , Luminiscencia , Nanopartículas/química , Imagen Óptica , Dióxido de Silicio , Estroncio
2.
ACS Appl Bio Mater ; 4(5): 4105-4118, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-34056563

RESUMEN

Existing fluorescent labels used in life sciences are based on organic compounds with limited lifetime or on quantum dots which are either expensive or toxic and have low kinetic stability in biological environments. To address these challenges, luminescent nanomaterials have been conceived as hierarchical, core-shell structures with spherical morphology and highly controlled dimensions. These tailor-made nanophosphors incorporate Ln:YVO4 nanoparticles (Ln = Eu(III) and Er(III)) as 50 nm cores and display intense and narrow emission maxima centered at ∼565 nm. These cores can be encapsulated in silica shells with highly controlled dimensions as well as functionalized with chitosan or PEG5000 to reduce nonspecific interactions with biomolecules in living cells. Confocal fluorescence microscopy in living prostate cancer cells confirmed the potential of these platforms to overcome the disadvantages of commercial fluorophores and their feasibility as labels for multiplexing, biosensing, and imaging in life science assays.


Asunto(s)
Materiales Biocompatibles/química , Colorantes Fluorescentes/química , Imagen Óptica , Neoplasias de la Próstata/diagnóstico por imagen , Línea Celular Tumoral , Humanos , Elementos de la Serie de los Lantanoides/química , Masculino , Ensayo de Materiales , Nanopartículas/química , Tamaño de la Partícula , Compuestos de Vanadio/química , Itrio/química
3.
Nanotechnology ; 31(4): 045603, 2020 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-31589147

RESUMEN

Anatase TiO2 has become a material of great interest for photocatalytic production of hydrogen, environmental purification and solar energy conversion. Among the key parameters boosting the photocatalytic efficiency of the anatase nanoparticles, an increased light absorption to expand its optical response to the visible region, together with an improved charge separation of the photo-generated electrons and holes, can be enumerated. In this work, yellow-coloured, single-phase anatase nanoparticles have been obtained using a simple two-step solvothermal routine which requires no external addition of dopants, nor the use of a harassing/aggressive synthesis atmosphere. The obtained powders display a lowered bandgap (<3.0 eV) and significantly reduce the recombination processes, eventually leading to an improved photocatalytic performance under visible light, as exemplified by an enhanced degradation of phenol. This exceptional response is linked to the presence of intrinsic defects in the yellowish particles and, hence, the specific conditions of the proposed methodology become crucial to produce a propitious TiO2-defective nanomaterial capable of photo-degrade the phenol molecule, in contrast with the lack of photocatalytic activity currently exhibited by commercial photocatalysts under visible light.

4.
Nanoscale Res Lett ; 9(1): 273, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24948894

RESUMEN

The fabrication of hierarchical anatase microspheres with potential photocatalytic properties eventually comprises a consolidation step in which a high degree of crystalline order is typically achieved through conventional electric heating treatments. This however entails a substantial reduction in the specific surface area and porosity of the powders, with the consequent deterioration in their photocatalytic response. Here, we have tested the employ of microwave heating as an alternative energy-saving sintering method to promote fast crystallization. The results obtained suggest that under the microwave radiation, the TiO2 hierarchical structures can effectively crystallize in a drastically reduced heating time, allowing the specific surface area and the porosity to be kept in the high values required for an improved photocatalytic performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA