Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Gynecol Minim Invasive Ther ; 12(4): 203-210, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38034113

RESUMEN

In the "boat at the dock" theory, pelvic organ prolapse (POP) may happen when the ropes (uterine supportive ligaments) break and/or the water level drops (pelvic floor muscles). Thus, it causes the boat (uterus and other pelvic organs) to slip from normal position and protrude out of the vagina. Surgical intervention with or without hysterectomy (hystero-preservation) is the most effective treatment for POP. Both hysterectomy and hystero-preservation for POP had a high anatomic and clinical cure rate. There is an increasing trend of hystero-preservation for POP during the past decades. The choices of either hysterectomy or hystero-preservation depend on the surgical factors, psychosocial factors, self-esteem and sexuality factors, and surgeon factors. Pelvic reconstructive surgery, either hysterectomy or hystero-preservation, can be performed via different approaches, including abdominal, laparoscopic, and vaginal routes, with native tissue or with mesh. This review will elucidate their related pros and cons, with further discussion and comparison of hystero-preservation via different routes.

2.
J Cell Sci ; 136(12)2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37232206

RESUMEN

Mitochondrial dynamics regulate the quality and morphology of mitochondria. Calcium (Ca2+) plays an important role in regulating mitochondrial function. Here, we investigated the effects of optogenetically engineered Ca2+ signaling on mitochondrial dynamics. More specifically, customized illumination conditions could trigger unique Ca2+ oscillation waves to trigger specific signaling pathways. In this study, we found that modulating Ca2+ oscillations by increasing the light frequency, intensity and exposure time could drive mitochondria toward the fission state, mitochondrial dysfunction, autophagy and cell death. Moreover, illumination triggered phosphorylation at the Ser616 residue but not the Ser637 residue of the mitochondrial fission protein, dynamin-related protein 1 (DRP1, encoded by DNM1L), via the activation of Ca2+-dependent kinases CaMKII, ERK and CDK1. However, optogenetically engineered Ca2+ signaling did not activate calcineurin phosphatase to dephosphorylate DRP1 at Ser637. In addition, light illumination had no effect on the expression levels of the mitochondrial fusion proteins mitofusin 1 (MFN1) and 2 (MFN2). Overall, this study provides an effective and innovative approach to altering Ca2+ signaling for controlling mitochondrial fission with a more precise resolution than pharmacological approaches in the temporal dimension.


Asunto(s)
Calcio , Dinámicas Mitocondriales , Dinámicas Mitocondriales/fisiología , Calcio/metabolismo , Dinaminas/genética , Dinaminas/metabolismo , Mitocondrias/metabolismo , Fosforilación , Muerte Celular , Proteínas Mitocondriales/metabolismo
3.
ACS Appl Mater Interfaces ; 15(17): 21333-21343, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37074734

RESUMEN

In this study, we designed and synthesized three series of blue emitting homoleptic iridium(III) phosphors bearing 4-cyano-3-methyl-1-phenyl-6-(trifluoromethyl)-benzo[d]imidazol-2-ylidene (mfcp), 5-cyano-1-methyl-3-phenyl-6-(trifluoromethyl)-benzo[d]imidazol-2-ylidene (ofcp), and 1-(3-(tert-butyl)phenyl)-6-cyano-3-methyl-4-(trifluoromethyl)-benzo[d]imidazol-2-ylidene (5-mfcp) cyclometalates, respectively. These iridium complexes exhibit intense phosphorescence in the high energy region of 435-513 nm in the solution state at RT, to which the relatively large T1 → S0 transition dipole moment is beneficial for serving as a pure emitter and an energy donor to the multiresonance thermally activated delayed fluorescence (MR-TADF) terminal emitters via Förster resonance energy transfer (FRET). The resulting OLEDs achieved true blue, narrow bandwidth EL with a max EQE of 16-19% and great suppression of efficiency roll-off with ν-DABNA and t-DABNA. We obtained the FRET efficiency up to 85% using titled Ir(III) phosphors f-Ir(mfcp)3 and f-Ir(5-mfcp)3 to achieve true blue narrow bandwidth emission. Importantly, we also provide analysis on the kinetic parameters involved in the energy transfer processes and, accordingly, propose feasible ways to improve the efficiency roll-off caused by the shortened radiative lifetime of hyperphosphorescence.

4.
J Cell Physiol ; 237(12): 4487-4503, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36251015

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers because of its late diagnosis and chemoresistance. Primary cilia, the cellular antennae, are observed in most human cells to maintain development and differentiation. Primary cilia are gradually lost during the progression of pancreatic cancer and are eventually absent in PDAC. Here, we showed that cisplatin-resistant PDAC regrew primary cilia. Additionally, genetic or pharmacological disruption of primary cilia sensitized PDAC to cisplatin treatment. Mechanistically, ataxia telangiectasia mutated (ATM) and ATM and RAD3-related (ATR), tumor suppressors that initiate DNA damage responses, promoted the excessive formation of centriolar satellites (EFoCS) and autophagy activation. Disruption of EFoCS and autophagy inhibited primary ciliogenesis, sensitizing PDAC cells to cisplatin treatment. Collectively, our findings revealed an unexpected interplay among the DNA damage response, primary cilia, and chemoresistance in PDAC and deciphered the molecular mechanism by which ATM/ATR-mediated EFoCS and autophagy cooperatively regulate primary ciliogenesis.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Carcinoma Ductal Pancreático , Resistencia a Antineoplásicos , Neoplasias Pancreáticas , Humanos , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Cisplatino/farmacología , Cisplatino/uso terapéutico , Daño del ADN , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Cilios , Neoplasias Pancreáticas
5.
Front Genet ; 13: 810595, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35601492

RESUMEN

Background: Short tandem repeats (STRs) are highly variable elements that play a pivotal role in multiple genetic diseases and the regulation of gene expression. Long-read sequencing (LRS) offers a potential solution to genome-wide STR analysis. However, characterizing STRs in human genomes using LRS on a large population scale has not been reported. Methods: We conducted the large LRS-based STR analysis in 193 unrelated samples of the Chinese population and performed genome-wide profiling of STR variation in the human genome. The repeat dynamic index (RDI) was introduced to evaluate the variability of STR. We sourced the expression data from the Genotype-Tissue Expression to explore the tissue specificity of highly variable STRs related genes across tissues. Enrichment analyses were also conducted to identify potential functional roles of the high variable STRs. Results: This study reports the large-scale analysis of human STR variation by LRS and offers a reference STR database based on the LRS dataset. We found that the disease-associated STRs (dSTRs) and STRs associated with the expression of nearby genes (eSTRs) were highly variable in the general population. Moreover, tissue-specific expression analysis showed that those highly variable STRs related genes presented the highest expression level in brain tissues, and enrichment pathways analysis found those STRs are involved in synaptic function-related pathways. Conclusion: Our study profiled the genome-wide landscape of STR using LRS and highlighted the highly variable STRs in the human genome, which provide a valuable resource for studying the role of STRs in human disease and complex traits.

6.
Front Cell Dev Biol ; 10: 854640, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35493102

RESUMEN

Background: Structural variations (SVs) are common genetic alterations in the human genome that could cause different phenotypes and diseases, including cancer. However, the detection of structural variations using the second-generation sequencing was limited by its short read length, which restrained our understanding of structural variations. Methods: In this study, we developed a 28-gene panel for long-read sequencing and employed it to Oxford Nanopore Technologies and Pacific Biosciences platforms. We analyzed structural variations in the 28 breast cancer-related genes through long-read genomic and transcriptomic sequencing of tumor, para-tumor, and blood samples in 19 breast cancer patients. Results: Our results showed that some somatic SVs were recurring among the selected genes, though the majority of them occurred in the non-exonic region. We found evidence supporting the existence of hotspot regions for SVs, which extended our previous understanding that they exist only for single nucleotide variations. Conclusion: In conclusion, we employed long-read genomic and transcriptomic sequencing to identify SVs from breast cancer patients and proved that this approach holds great potential in clinical application.

7.
Cell Mol Life Sci ; 78(23): 7681-7692, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34705054

RESUMEN

Pathological angiogenesis (PA) contributes to various ocular diseases, including age-related macular degeneration, diabetic retinopathy, and retinopathy of prematurity, which are major causes of blindness over the world. Current treatments focus on anti-vascular endothelial growth factor (VEGF) therapy, but persistent avascular retina, recurrent intravitreal neovascularization, and general adverse effects are reported. We have previously found that recombinant thrombomodulin domain 1 (rTMD1) can suppress vascular inflammation. However, the function of rTMD1 in VEGF-induced PA remains unknown. In this study, we found that rTMD1 inhibited VEGF-induced angiogenesis in vitro. In an oxygen induced retinopathy (OIR) animal model, rTMD1 treatment significantly decreased retinal neovascularization but spared normal physiological vessel growth. Furthermore, loss of TMD1 significantly promoted PA in OIR. Meanwhile, hypoxia-inducible factor-1α, the transcription factor that upregulates VEGF, was suppressed after rTMD1 treatment. The levels of interleukin-6, and intercellular adhesion molecule-1 were also significantly suppressed. In conclusion, our results indicate that rTMD1 not only has dual effects to suppress PA and inflammation in OIR, but also can be a potential HIF-1α inhibitor for clinical use. These data bring forth the possibility of rTMD1 as a novel therapeutic agent for PA.


Asunto(s)
Regulación de la Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Neovascularización Patológica/prevención & control , Neovascularización Retiniana/prevención & control , Trombomodulina/metabolismo , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Animales , Apoptosis , Movimiento Celular , Proliferación Celular , Células Cultivadas , Femenino , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Neovascularización Retiniana/genética , Neovascularización Retiniana/metabolismo , Neovascularización Retiniana/patología , Trombomodulina/genética , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
8.
Int J Mol Sci ; 22(18)2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34575972

RESUMEN

Glutamine and lipids are two important components of proliferating cancer cells. Studies have demonstrated that glutamine synthetase (GS) boosts glutamine-dependent anabolic processes for nucleotide and protein synthesis, but the role of GS in regulating lipogenesis remains unclear. This study identified that insulin and glutamine deprivation activated the lipogenic transcription factor sterol regulatory element-binding protein 1 (SREBP1) that bound to the GS promoter and increased its transcription. Notably, GS enhanced the O-linked N-acetylglucosaminylation (O-GlcNAcylation) of the specificity protein 1 (Sp1) that induced SREBP1/acetyl-CoA carboxylase 1 (ACC1) expression resulting in lipid droplet (LD) accumulation upon insulin treatment. Moreover, glutamine deprivation induced LD formation through GS-mediated O-GlcNAc-Sp1/SREBP1/ACC1 signaling and supported cell survival. These findings demonstrate that insulin and glutamine deprivation induces SREBP1 that transcriptionally activates GS, resulting in Sp1 O-GlcNAcylation. Subsequently, O-GlcNAc-Sp1 transcriptionally upregulates the expression of SREBP1, resulting in a feedforward loop that increases lipogenesis and LD formation in liver and breast cancer cells.


Asunto(s)
Acetil-CoA Carboxilasa/genética , Glutamato-Amoníaco Ligasa/genética , Neoplasias Hepáticas/genética , Factor de Transcripción Sp1/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Glutamina/metabolismo , Humanos , Insulina/metabolismo , Lípidos/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Metabolismo/genética , Regiones Promotoras Genéticas/genética , Biosíntesis de Proteínas/genética , Transducción de Señal , beta-N-Acetilhexosaminidasas/genética
9.
Mol Ther Oncolytics ; 18: 282-294, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32728616

RESUMEN

Type 2 diabetes mellitus (T2DM) is a frequent comorbidity of cancer. Hyperinsulinemia secondary to T2DM promotes cancer progression, whereas antidiabetic agents, such as metformin, have anticancer effects. However, the detailed mechanism for insulin and metformin-regulated cancer cell proliferation remains unclear. This study identified a mechanism by which insulin upregulated the expression of c-Myc, sterol regulatory element-binding protein 1 (SREBP1), and acetyl-coenzyme A (CoA) carboxylase 1 (ACC1), which are important regulators of lipogenesis and cell proliferation. Thymine DNA glycosylase (TDG), a DNA demethylase, was transactivated by c-Myc upon insulin treatment, thereby decreasing 5-carboxylcytosine (5caC) abundance in the SREBP1 promoter. On the other hand, metformin-activated AMP-activated protein kinase (AMPK) increased DNA methyltransferase 3A (DNMT3A) activity to increase 5-methylcytosine (5mC) abundance in the TDG promoter. This resulted in decreased TDG expression and enhanced 5caC abundance in the SREBP1 promoter. These findings demonstrate that c-Myc activates, whereas AMPK inhibits, TDG-mediated DNA demethylation of the SREBP1 promoter in insulin-promoted and metformin-suppressed cancer progression, respectively. This study indicates that TDG is an epigenetic-based therapeutic target for cancers associated with T2DM.

10.
PLoS One ; 15(7): e0236318, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32726319

RESUMEN

Lately, Drosophila has been favored as a model in sleep and circadian rhythm research due to its conserved mechanism and easily manageable operation. These studies have revealed the sophisticated parameters in whole-day sleep profiles of Drosophila, drawing connections between Drosophila sleep and human sleep. In this study, we tested several sleep deprivation protocols (mechanical shakes and light interruptions) on Drosophila and delineated their influences on Drosophila sleep. We applied a daytime light-deprivation protocol (DD) mimicking jet-lag to screen drugs that alleviate sleep deprivation. Characteristically, classical sleep-aid compounds exhibited different forms of influence: phenobarbital and pentobarbital modified total sleep time, while melatonin only shortened the latency to sleep. Such results construct the basis for further research on sleep benefits in other treatments in Drosophila. We screened seven herb extracts, and found very diverse results regarding their effect on sleep regulation. For instance, Panax notoginseng and Withania somnifera extracts displayed potent influence on total sleep time, while Melissa officinalis increased the number of sleep episodes. By comparing these treatments, we were able to rank drug potency in different aspects of sleep regulation. Notably, we also confirmed the presence of sleep difficulties in a Drosophila Alzheimer's disease (AD) model with an overexpression of human Abeta, and recognized clear differences between the portfolios of drug screening effects in AD flies and in the control group. Overall, potential drug candidates and receipts for sleep problems can be identified separately for normal and AD Drosophila populations, outlining Drosophila's potential in drug screening tests in other populations if combined with the use of other genetic disease tools.


Asunto(s)
Extractos Vegetales/farmacología , Privación de Sueño/tratamiento farmacológico , Trastornos del Sueño-Vigilia/tratamiento farmacológico , Sueño/fisiología , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/genética , Animales , Ritmo Circadiano/efectos de los fármacos , Modelos Animales de Enfermedad , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Regulación de la Expresión Génica/genética , Humanos , Melatonina/farmacología , Mutación , Panax notoginseng/química , Fenobarbital/farmacología , Extractos Vegetales/química , Sueño/efectos de los fármacos , Sueño/genética , Privación de Sueño/genética , Privación de Sueño/fisiopatología , Trastornos del Sueño-Vigilia/genética , Trastornos del Sueño-Vigilia/fisiopatología , Withania/química
11.
J Biomed Sci ; 27(1): 63, 2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32389123

RESUMEN

Oxygen is essentially required by most eukaryotic organisms as a scavenger to remove harmful electron and hydrogen ions or as a critical substrate to ensure the proper execution of enzymatic reactions. All nucleated cells can sense oxygen concentration and respond to reduced oxygen availability (hypoxia). When oxygen delivery is disrupted or reduced, the organisms will develop numerous adaptive mechanisms to facilitate cells survived in the hypoxic condition. Normally, such hypoxic response will cease when oxygen level is restored. However, the situation becomes complicated if hypoxic stress persists (chronic hypoxia) or cyclic normoxia-hypoxia phenomenon occurs (intermittent hypoxia). A series of chain reaction-like gene expression cascade, termed hypoxia-mediated gene regulatory network, will be initiated under such prolonged or intermittent hypoxic conditions and subsequently leads to alteration of cellular function and/or behaviors. As a result, irreversible processes occur that may cause physiological disorder or even pathological consequences. A growing body of evidence implicates that hypoxia plays critical roles in the pathogenesis of major causes of mortality including cancer, myocardial ischemia, metabolic diseases, and chronic heart and kidney diseases, and in reproductive diseases such as preeclampsia and endometriosis. This review article will summarize current understandings regarding the molecular mechanism of hypoxia in these common and important diseases.


Asunto(s)
Endometriosis/fisiopatología , Cardiopatías/fisiopatología , Hipoxia/fisiopatología , Enfermedades Renales/fisiopatología , Enfermedades Metabólicas/fisiopatología , Isquemia Miocárdica/fisiopatología , Neoplasias/fisiopatología , Preeclampsia/fisiopatología , Enfermedad Crónica , Endometriosis/etiología , Femenino , Cardiopatías/etiología , Humanos , Hipoxia/complicaciones , Enfermedades Renales/etiología , Masculino , Enfermedades Metabólicas/etiología , Isquemia Miocárdica/etiología , Neoplasias/etiología , Preeclampsia/etiología , Embarazo
12.
Aging (Albany NY) ; 12(1): 690-706, 2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31907335

RESUMEN

Alzheimer's disease (AD) is an age-related neurodegenerative disease with unknown mechanism that is characterized by the aggregation of abnormal proteins and dysfunction of immune responses. In this study, an integrative approach employing in silico analysis and wet-lab experiment was conducted to estimate the degrees of innate immune system relevant gene expression, neurotoxic Aß42 generation and neuronal apoptosis in normal Drosophila melanogaster and a transgenic model of AD. Results demonstrated mRNA levels of antimicrobial peptide (AMP) genes gradually increased with age in wild-type flies, while which exhibited a trend for an initial decrease followed by subsequent increase during aging in the AD group. Time series and correlation analysis illustrated indicated a potential relationship between variation in AMP expression and Aß42 concentration. In conclusion, our study provides evidence for abnormal gene expression of AMPs in AD flies with age, which is distinct from the expression profiles in the normal aging process. Aberrant AMP expression may participate in the onset and development of AD by inducing or accelerating Aß deposition. These findings suggest that AMPs may serve as potential diagnostic biomarkers and therapeutic targets. However, further studies are required to elucidate the pathological effects and underlying mechanisms of AMP dysregulation in AD progression.


Asunto(s)
Envejecimiento/genética , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/genética , Regulación de la Expresión Génica , Proteínas Citotóxicas Formadoras de Poros/genética , Péptidos beta-Amiloides/metabolismo , Animales , Animales Modificados Genéticamente , Apoptosis/genética , Encéfalo/metabolismo , Bases de Datos Genéticas , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunidad Innata/genética , Neuronas/metabolismo
13.
J Adv Res ; 22: 1-6, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31956437

RESUMEN

Acanthamoeba keratitis (AK) is difficult to treat, especially when the corneal deep stroma is involved. Intrastromal injection of antimicrobial agents is an effective adjuvant therapy for deep recalcitrant microbial keratitis; however, it has not been used to treat AK due to suspected drug toxicity. The purpose of this study was to evaluate the toxicity of corneal intrastromal injection of polyhexamethylene biguanide (PHMB) and propamidine isethionate (Brolene®, Sanofi) in New Zealand white rabbits. We performed intrastromal injections of PHMB (0.02 or 0.01%) and propamidine isethionate (0.1 or 0.05%) into the rabbits' right corneas. The left corneas were injected with phosphate-buffered saline as controls. The rabbits were sacrificed on the 7th day after injection, and the corneal buttons were harvested for further evaluation by slit lamp microscopy, specular microscopy, hematoxylin and eosin staining, scanning electron microscopy, terminal deoxynucleotidyl transferase (TdT) dUTP nick-end labeling assays, and WST-1 assays. We found that intrastromal injection of 0.02% PHMB or 0.1% propamidine isethionate resulted in corneal epithelial erosion, corneal edema, and severe neovascularization. However, 0.01% PHMB or 0.05% propamidine isethionate did not induce obvious cornea toxicity. In conclusion, intrastromal injection of 0.01% PHMB or 0.05% propamidine isethionate may be promising adjunctive treatments for deep stromal AK.

14.
ACS Nano ; 13(1): 97-113, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30532951

RESUMEN

The blood-brain barrier (BBB) selectively controls the passage of endogenous and exogenous molecules between systemic circulation and the brain parenchyma. Nanocarrier-based drugs such as liposomes and nanoparticles are an attractive prospect for cancer therapy since they can carry a drug payload and be modified to improve targeting and retention at the desired site. However, the BBB prevents most therapeutic drugs from entering the brain, including physically restricting the passage of liposomes and nanoparticles. In this paper, we show that a low dose of systemically injected recombinant human vascular endothelial growth factor induces a short period of increased BBB permeability. We have shown increased delivery of a range of nanomedicines to the brain including contrast agents for imaging, varying sizes of nanoparticles, small molecule chemotherapeutics, tracer dyes, and liposomal chemotherapeutics. However, this effect was not uniform across all brain regions, and permeability varied depending on the drug or molecule measured. We have found that this window of BBB permeability effect is transient, with normal BBB integrity restored within 4 h. This strategy, combined with liposomal doxorubicin, was able to significantly extend survival in a mouse model of human glioblastoma. We have found no evidence of systemic toxicity, and the technique was replicated in pigs, demonstrating that this technique could be scaled up and potentially be translated to the clinic, thus allowing the use of nanocarrier-based therapies for brain disorders.


Asunto(s)
Antineoplásicos/farmacocinética , Barrera Hematoencefálica/efectos de los fármacos , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Liposomas/metabolismo , Factor A de Crecimiento Endotelial Vascular/farmacología , Animales , Antineoplásicos/uso terapéutico , Barrera Hematoencefálica/metabolismo , Neoplasias Encefálicas/diagnóstico por imagen , Permeabilidad Capilar/efectos de los fármacos , Medios de Contraste/farmacocinética , Doxorrubicina/farmacocinética , Doxorrubicina/uso terapéutico , Femenino , Colorantes Fluorescentes/farmacocinética , Glioblastoma/diagnóstico por imagen , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos ICR , Ratones Desnudos , Ratones SCID , Porcinos , Factor A de Crecimiento Endotelial Vascular/administración & dosificación
15.
Case Rep Obstet Gynecol ; 2018: 2794374, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29992067

RESUMEN

Postpartum hemorrhage remains a major threat to maternal health. Intervention after critical blood loss or development of disseminated intravascular coagulation may lead to disastrous organ failure and poor outcomes. A 30-year-old woman was transferred to our emergency department due to massive postpartum hemorrhage. Shock and disseminated intravascular coagulation ensued, and the patient's condition quickly deteriorated. We performed an emergency hysterectomy, but blood loss had been massive. Moreover, there was another episode of internal bleeding that led to further blood loss. Ischemic injury to the liver was tremendous, with resulting progressive jaundice and hepatic encephalopathy. The patient required liver transplantation. Imaging studies and operative findings showed a large area of hepatic infarction. Unfortunately, the patient died of intractable sepsis shortly after liver transplantation. Disseminated intravascular coagulation and resultant hepatic infarction combined with ischemic hepatitis were the direct cause of death in our case.

16.
Acta Biomater ; 58: 238-243, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28579539

RESUMEN

In this study, we developed a novel method using supercritical carbon dioxide (SCCO2) to prepare acellular porcine cornea (APC). Under gentle extraction conditions using SCCO2 technology, hematoxylin and eosin staining showed that cells were completely lysed, and cell debris, including nuclei, was efficiently removed from the porcine cornea. The SCCO2-treated corneas exhibited intact stromal structures and appropriate mechanical properties. Moreover, no immunological reactions and neovascularization were observed after lamellar keratoplasty in rabbits. All transplanted grafts and animals survived without complications. The transplanted APCs were opaque after the operation but became transparent within 2weeks. Complete re-epithelialization of the transplanted APCs was observed within 4weeks. In conclusion, APCs produced by SCCO2 extraction technology could be an ideal and useful scaffold for corneal tissue engineering. STATEMENT OF SIGNIFICANCE: We decellularized the porcine cornea using SCCO2 extraction technology and investigated the characteristics, mechanical properties, and biocompatibility of the decellularized porcine cornea by lamellar keratoplasty in rabbits. To the best of our knowledge, this is the first report describing the use of SCCO2 extraction technology for preparation of acellular corneal scaffold. We proved that the cellular components of porcine corneas had been efficiently removed, and the biomechanical properties of the scaffold were well preserved by SCCO2 extraction technology. SCCO2-treated corneas maintained optical transparency and exhibited appropriate strength to withstand surgical procedures. In vivo, the transplanted corneas showed no evidence of immunological reactions and exhibited good biocompatibility and long-term stability. Our results suggested that the APCs developed by SCCO2 extraction technology could be an ideal and useful scaffold for corneal replacement and corneal tissue engineering.


Asunto(s)
Dióxido de Carbono/química , Córnea/química , Trasplante de Córnea/métodos , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Xenoinjertos , Humanos , Conejos , Porcinos
17.
Chin J Nat Med ; 15(12): 899-904, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29329646

RESUMEN

Herbal extracts have been extensively used worldwide for their application on memory improvement, especially among aged and memory-deficit populations. In the present study, the memory loss induced by human Abeta protein over-expression in fruitfly Alzheimer's disease (AD) model was rescued by multiple extracts from Gardenia jasminoides. Three extracts that rich with gardenia yellow, geniposide, and gardenoside components showed distinct rescue effect on memory loss. Further investigation on adding gardenoside into a formula of Ganoderma lucidum, Panax notoginseng and Panax ginseng (GPP) also support its therapeutic effects on memory improvement. Interestingly, the application of GPP and gardenoside did not alter the accumulation of Abeta proteins but suppressed the expression of immune-related genes in the brain. These results revealed the importance and relevancy of anti-inflammation process and the underlying mechanisms on rescuing memory deficits, suggesting the potential therapeutic use of the improved GPP formulation in improving cognition in defined population in the future.


Asunto(s)
Enfermedad de Alzheimer , Cognición/efectos de los fármacos , Gardenia/química , Inmunidad Innata/efectos de los fármacos , Extractos Vegetales/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Péptidos Catiónicos Antimicrobianos/genética , Encéfalo/efectos de los fármacos , Encéfalo/inmunología , Modelos Animales de Enfermedad , Drosophila , Proteínas de Drosophila/genética , Regulación de la Expresión Génica/efectos de los fármacos , Iridoides/química , Iridoides/aislamiento & purificación , Iridoides/farmacología , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Reacción en Cadena de la Polimerasa
18.
J Neurogenet ; 30(3-4): 259-275, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27868467

RESUMEN

Intrinsic electric activities of neurons play important roles in establishing and refining neural circuits during development. However, how the underlying ionic currents undergo postembryonic reorganizations remains largely unknown. Using acutely dissociated neurons from larval, pupal, and adult Drosophila brains, we show drastic re-assemblies and compensatory regulations of voltage-gated (IKv) and Ca2+-activated (IK(Ca)) K+ currents during postembryonic development. Larval and adult neurons displayed prominent fast-inactivating IKv, mediated by the Shaker (Sh) channel to a large extent, while in the same neurons IK(Ca) was far smaller in amplitude. In contrast, pupal neurons were characterized by large sustained IKv and prominent IK(Ca), encoded predominantly by the slowpoke (slo) gene. Surprisingly, deletion of Sh in the ShM null mutant removed inactivating, transient IKv from large portions of neurons at all stages. Interestingly, elimination of Sh currents was accompanied by upregulation of non-Sh transient IKv. In comparison, the slo1 mutation abolished the vast majority of IK(Ca), particularly at the pupal stage. Strikingly, the deficiency of IK(Ca) in slo pupae was compensated by the transient component of IKv mediated by Sh channels. Thus, IK(Ca) appears to play critical roles in pupal development and its absence induces functional compensations from a specific transient IKv current. While mutants lacking either Sh or slo currents survived normally, Sh;;slo double mutants deficient in both failed to survive through pupal metamorphosis. Together, our data highlight significant reorganizations and homeostatic compensations of K+ currents during postembryonic development and uncover previously unrecognized roles for Sh and slo in this plastic process.


Asunto(s)
Drosophila/fisiología , Neurogénesis/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Canales de Potasio/metabolismo , Animales , Homeostasis/fisiología
19.
Phys Rev Lett ; 117(16): 165101, 2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27792387

RESUMEN

Collisionless shock nonstationarity arising from microscale physics influences shock structure and particle acceleration mechanisms. Nonstationarity has been difficult to quantify due to the small spatial and temporal scales. We use the closely spaced (subgyroscale), high-time-resolution measurements from one rapid crossing of Earth's quasiperpendicular bow shock by the Magnetospheric Multiscale (MMS) spacecraft to compare competing nonstationarity processes. Using MMS's high-cadence kinetic plasma measurements, we show that the shock exhibits nonstationarity in the form of ripples.

20.
Cell Death Differ ; 23(9): 1565-76, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27177019

RESUMEN

Necroptosis is a caspase-independent form of cell death that is triggered by activation of the receptor interacting serine/threonine kinase 3 (RIPK3) and phosphorylation of its pseudokinase substrate mixed lineage kinase-like (MLKL), which then translocates to membranes and promotes cell lysis. Activation of RIPK3 is regulated by the kinase RIPK1. Here we analyze the contribution of RIPK1, RIPK3, or MLKL to several mouse disease models. Loss of RIPK3 had no effect on lipopolysaccharide-induced sepsis, dextran sodium sulfate-induced colitis, cerulein-induced pancreatitis, hypoxia-induced cerebral edema, or the major cerebral artery occlusion stroke model. However, kidney ischemia-reperfusion injury, myocardial infarction, and systemic inflammation associated with A20 deficiency or high-dose tumor necrosis factor (TNF) were ameliorated by RIPK3 deficiency. Catalytically inactive RIPK1 was also beneficial in the kidney ischemia-reperfusion injury model, the high-dose TNF model, and in A20(-/-) mice. Interestingly, MLKL deficiency offered less protection in the kidney ischemia-reperfusion injury model and no benefit in A20(-/-) mice, consistent with necroptosis-independent functions for RIPK1 and RIPK3. Combined loss of RIPK3 (or MLKL) and caspase-8 largely prevented the cytokine storm, hypothermia, and morbidity induced by TNF, suggesting that the triggering event in this model is a combination of apoptosis and necroptosis. Tissue-specific RIPK3 deletion identified intestinal epithelial cells as the major target organ. Together these data emphasize that MLKL deficiency rather than RIPK1 inactivation or RIPK3 deficiency must be examined to implicate a role for necroptosis in disease.


Asunto(s)
Inflamación/patología , Proteínas Quinasas/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Animales , Apoptosis/efectos de los fármacos , Ceruletida/toxicidad , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/patología , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Femenino , Inflamación/metabolismo , Lipopolisacáridos/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Pancreatitis/inducido químicamente , Pancreatitis/metabolismo , Pancreatitis/patología , Proteínas Quinasas/deficiencia , Proteínas Quinasas/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/antagonistas & inhibidores , Proteína Serina-Treonina Quinasas de Interacción con Receptores/deficiencia , Daño por Reperfusión/metabolismo , Daño por Reperfusión/mortalidad , Daño por Reperfusión/patología , Sepsis/etiología , Sepsis/metabolismo , Sepsis/patología , Síndrome de Respuesta Inflamatoria Sistémica/etiología , Síndrome de Respuesta Inflamatoria Sistémica/metabolismo , Síndrome de Respuesta Inflamatoria Sistémica/patología , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/deficiencia , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA